Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find monkeys able to fend off AIDS-like symptoms with enhanced HIV vaccine

22.11.2007
Findings could point to novel ways to boost immune response in humans

Researchers at the University of Pennsylvania School of Medicine have discovered that using an immune system gene to enhance a vaccine used to study HIV in macaque monkeys provides the animals with greater protection against simian HIV (SHIV) than an unmodified vaccine. This multi-year study found that the addition of a molecule called Interleukin-15 effectively boosts the effects of a vaccine derived from the DNA of simian HIV. The study illustrates that DNA vaccine effectiveness can be improved by the inclusion of specific immune adjuvants, or helpers.

The findings are published in last week’s online edition of the Proceedings of the National Academy of Sciences.

“DNA vaccine technology has great promise for the development of vaccines and immune therapeutics for a variety of infectious diseases and cancers,” says senior author David B. Weiner, PhD, Professor of Pathology and Laboratory Medicine at Penn. While previous studies have established that the technology can induce immune responses safely, “improving the immune potency of this platform is critical for further development in humans.”

... more about:
»DNA »HIV »Vaccine »immune

The research builds on previous work aimed at engineering a more potent immune response to SHIV DNA vaccine technology. Mouse model studies previously showed that the cytokine IL-15 -- a substance that can improve the body's natural response to infection and disease -- helps better immune responses and protection, while this study mirrors those findings in a larger, non-human primate species.

In this study, the group of macaques that was injected with the vaccine containing a loop of DNA enabling them to make IL-15 developed no signs of AIDS-like symptoms when exposed to live SHIV, compared to four animals in the control group that received only the DNA vaccine. The modified vaccine appeared to help suppress viral replication among the IL-15 group.

Next, Weiner’s team will study the protected macaques to determine the actual mechanism of their protection, and seek out any pockets of the virus that may be hiding in specific immune compartments. The approach will also be tested for safety and immunogenicity in humans through the HIV Vaccine Trials Network.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: DNA HIV Vaccine immune

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>