Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ripening secrets of the vine revealed

22.11.2007
Whether you prefer a Cabernet Sauvignon or a Pinot Noir grape variety, two new research articles published in the online open access journal, BMC Genomics, offer a host of new genetic information on fruit ripening for this economically important fruit crop.

The grapevine's gene expression analysis reveals two distinct molecular and functional phases that correspond with the green and red grape stages. And researchers have reported the first biochemical evidence that reactive oxygen species accumulate during the colour transition. Stefania Pilati and fellow researchers from the IASMA Research Center, San Michele all'Adige, Italy, investigated ripening Pinot Noir grapes (Vitis vinifera L.) to identify fruit ripening genes and investigate seasonal influences. They found a core set of more than 1,400 ripening-specific genes that fluctuated similarly across three growing seasons and a smaller gene group strongly influenced by climatic conditions.

During the green berry (pre-véraison) phase, numerous genes involved in hormonal signalling and transcriptional regulation were modulated, suggesting large-scale cellular metabolism reprogramming. Auxin, ethylene and light played pivotal roles. During the following ripening (post-véraison) phase, genes for cell-wall organization and biogenesis, carbohydrate and secondary metabolisms, and stress response came into play, whereas photosynthesis was strongly repressed. These transcriptional events tally with the processes of berry softening and accumulation of sugar, colour and aroma compounds, which ultimately determine berry and wine quality. At véraison, the intervening point when grapes slow down their growth and change colour, this study highlighted an oxidative burst involving hydrogen peroxide (H2O2), and an extensive modulation of the enzymatic anti-oxidative network.

Meanwhile, Laurent G. Deluc and colleagues from the University of Nevada, Reno and the Boston University School of Medicine, USA, took a closer look at the V. vinifera Cabernet Sauvignon variety, surveying seven different stages of grape berry development. The team mapped pronounced differences throughout development in messenger-RNA (mRNA) expression for genes that play key functional roles in a host of processes. These included organic and amino acid metabolism, photosynthesis, circadian cycles and pathogen resistance.

... more about:
»Development »Expression »metabolism »ripening

In particular, the researchers recorded changes associated with transcription factor expression patterns, abscisic acid (ABA) biosynthesis, and calcium signalling genes that identified candidate factors likely to participate in véraison, or aroma compound production, and in pathway regulation and sequestration of flavonoid compounds. Some mRNAs were observed to decrease or increase specifically throughout ripening and sugar metabolism gene expression pattern analysis revealed an alternative and previously uncharacterised pathway for glucose and triose phosphate production invoked from véraison to mature berries.

Despite the grapevine's importance, genetic cues underlying the biochemical and physical changes during berry and flavour development have lain undiscovered - until now. "The large number of regulatory genes we have identified represents a powerful new resource for dissecting the mechanisms of fruit ripening control in non-climacteric plants", Pilati and co-workers say. Meanwhile, the second team say they have identified "a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing".

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcgenomics/

Further reports about: Development Expression metabolism ripening

More articles from Life Sciences:

nachricht Observing changes in the chirality of molecules in real time
14.11.2019 | ETH Zurich

nachricht Pinpointing Pollutants from Space
14.11.2019 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>