Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifesaving Bioteque at the University of Stavanger

21.11.2007
By using revolutionary methods the Plastid Company will produce proteins. Professor Simon Geir Møller heads the company which is the first bioteque company at the University of Stavanger.

The approach for the Plastid Company is to produce great quantities of plastids or mini cells in the plants. There are millions of these cells in each plant and they will function as efficient bio factories. The proteins will be used by research laboratories, the health service, the feed and fish industries and the pharmaceutical industry.

In addition to standard proteins Plastid will also design and produce new proteins and enzymes in demand by the market.

The production of proteins in plastids has until now been difficult, partly because it is a complicated process to put a gene into a plastid and then make a plant grow from this single plant cell.

... more about:
»Kinase »Møller »plastid

By applying our procedures we get the right plant after two to three months. The aim is to shorten the process to one to two months. When we have the plant which produces the protein demanded by the customer, we can simply expand – we will just grow more plants. Møller says.

The Plastid Company can develop products adapted to all illnesses caused by defective proteins. A particularly interesting area is the so-called kinases, proteins which are active in transmission of signals in our body. Defect kinases cause around 400 different serious illnesses from cancer to neurological ailments.

One example is stomach cancer where a special kinase is always switched on. Stomach cancer patients therefore need inhibitors of this kinase. They must be developed continuously since our patients become resistant to inhibitors after a while, Møller explains.

We want to produce kinases in our system which may be used for developing new inhibitors for these patients. We have already managed to produce a kinase, even though this is a process in which success is not easily achieved. It shows that we are able to manage this within our patented system. There is a large market for new proteins in the industry, but the infrastructure has so far been expensive. Plastid's system is robust and the production can easily be increased or reduced, Møller says.

Silje Stangeland | alfa
Further information:
http://www.uis.no/news/article7387-50.html

Further reports about: Kinase Møller plastid

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>