Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular therapy of a stroke

20.11.2007
Specialists of the “Trans-Technologies” Open Joint-Stock Company, with participation of Scientific Research Institute of Experimental Medicine, Russian Academy of Medical Sciences (St. Petersburg), have tested on rats the capabilities of cellular therapy for ischemic stroke treatment. It has turned out that intravenous transplantation of mesenchymal stem cells restores cerebrum blood supply and protects its nerve cells from death.

Under anaesthetic, the rats’ medium cerebral artery was pinched in order to impair the blood supply in the left hemisphere. Three days later, the animals were intravenously injected the mesenchymal stem cells (MSC) from the marrow.

These cells are able to differentiate into the cells of other tissues, including nerve cells. Part of the animals was false-operated – the operation was performed on them but the artery had not been pinched. The reference group animals’ artery was pinched but the stem cells were not introduced.

The MSCs for transplantation were singled out from the marrow of thigh-bones of other animals of the same laboratory line, the MSCs were marked by a fluorescent dye and injected into the laboratory rats’ caudal vein. The animals’ cerebrum was investigated six weeks later.

... more about:
»MSC »Transplantation »stem cells »stroke »therapy

There turned out to be unexpectedly few luminescent cells in the cerebrum specimen, and they were located not in the affected cortex zone but nearby ventricles of brain. This is strange as the specialists of “Tans-Technologies” have experimentally proved that stem cells introduced into the bloodstream come to the damaged tissue in several days. But nevertheless the stem cells introduction turned out effective for restoration of the affected brain.

The area of affected zone with the experimental rats was less than that with the untreated animals. Transplantation enables to preserve the parts of brain responsible for formation of emotions and motion regulation. With the untreated rats, these sections were noticeably damaged. Their stroke area was surrounded with an extensive zone of dying nerve cells.

The stem cells increased almost by twice the number of blood vessels in the injured left hemisphere, which contributed to cerebral blood supply restoration. It is interesting that more vessels appeared in the symmetrical unaffected hemisphere. This phenomenon has not been described in scientific publications, therefore the researchers are planning to investigate it separately.

Thanks to the stem cells, the rats successfully passed the test in two or three weeks after transplantation. They became calmer, they better orientated themselves in space and memorized disposition of surrounding objects. Besides, the animals restored symmetry of reactions in the left and the right side of the body and in utilization of extremities.

In the researchers’ opinion, the mesenchymal stem cells (MSCs) is practically an ideal material for cellular therapy as they can be introduced directly into the blood. This allows to avoid serious operations under general anaesthetic, which are necessary for cell injection directly into the brain.

Although the researchers are now unable to fully explain the MSCs mechanism of action, but their beneficial action on the brain after a stroke is evident. Possibly, in case of earlier MSC transplantation, more cells will be able to get into the brain, and the beneficial action will be even more apparent.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: MSC Transplantation stem cells stroke therapy

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>