Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telomerase enzyme structure provides significant new target for anti-cancer therapies

15.11.2007
Findings may also provide insights into normal aging

Inappropriate activation of a single enzyme, telomerase, is associated with the uncontrollable proliferation of cells seen in as many as 90 percent of all of human cancers. Since the mid-1990s, when telomerase was first identified in human tumors, scientists have eyed the enzyme as an ideal target for developing broadly effective anti-cancer drugs.

Now, researchers working at The Wistar Institute have brought this goal closer by deciphering the three-dimensional structure of a domain, or region, of the telomerase molecule essential for the activity of the enzyme. The findings, published November 13 in the journal Structure, may help scientists develop strategies to design the first direct inhibitors of telomerase.

Telomerase also has been shown to play a central role in normal aging, and the new study may shed light on that vital life process as well. The potential for creating new cancer treatments, however, is the most important immediate implication of the study.

... more about:
»Cancer »Telomerase »anti-cancer »enzyme »structure

“Knowing the physical structure of this complex will give pharmaceutical companies a direct target for designing drugs that disrupt a mechanism that telomerase uses to assemble itself,” says Emmanuel Skordalakes, Ph.D., an assistant professor in the Gene Expression and Regulation Program at Wistar and senior author on the study. “Such drugs could well have significant anti-cancer activity.”

Telomerase is essential for normal cell division and survival, and has been associated with aging and cancer. In humans, the usual role of telomerase is to add multiple repeats of a short length of DNA to the ends of chromosomes, known as telomeres, thus preventing damage and the loss of genetic information during DNA replication. It performs this critical service in developing embryos and in a few specialized cell lines, including stem cells.

In normal adult cells, however, telomerase is switched off almost entirely to prevent the dangers of runaway cell proliferation. This lack of telomerase activity is also associated with normal aging and underlies a seminal observation known as the Hayflick limit. At Wistar in the 1960s, Leonard Hayflick, Ph.D., noted that cells in culture divide only about 50 times before dying. Later, scientists tied this effect to the shortening of telomeres with each cell division when telomerase is no longer active in the cell.

Cancer cells, however, often regain the ability to produce telomerase, permitting them to replicate indefinitely. Though scientists have sought ways to inhibit this enzyme, a lack of detailed information on the enzyme’s structure has hindered progress.

Prior studies have shown that telomerase is made up of multiple protein components and a stretch of RNA that is used as a template to create the short DNA repeats that are added to the ends of chromosomes. In order for telomerase to function, the RNA and protein components of telomerase must interact to form a stable complex capable of DNA replication. This interaction occurs mainly on the so-called TRBD domain, which plays an essential role in complex formation and full assembly of the enzyme.

“Studies show if you delete the TRBD domain from telomerase, the enzyme is inactive because it can no longer assemble with RNA,” Skordalakes says. “Without the RNA, the enzyme can no longer replicate telomeres.”

To get a clear view of this interaction, Skordalakes and co-workers obtained the three-dimensional structure of TRBD using X-ray crystallography, a technique that analyzes the diffraction patterns of X-rays beamed at crystals of a molecule to determine the molecule’s atomic structure.

Their studies reveal that the TRBD domain is shaped like a boomerang, with a structural organization that leads to the formation of a narrow well-defined pocket on the surface of the protein that enables the enzyme to bind the single-stranded RNA used as a template for the DNA repeats.

A second RNA-binding site is formed by a large cavity that serves as an extension of the single-strandedRNA-binding pocket. The extent of these RNA interactions indicates the important role of this domain in stabilizing the complex, Skordalakes says.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: Cancer Telomerase anti-cancer enzyme structure

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>