Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new view on sensing, movement, and behavioral control in animals

13.11.2007
While most animals, including humans, preferentially sense and move toward objects that are in front of them, an electric fish from the Amazon called the black ghost knifefish can swim backward or forward to catch its prey.

In a new study published online this week in the open-access journal PLoS Biology, James Snyder and colleagues at Northwestern University investigate the relationship between the energetic costs of the knifefish’s active sensing system—which requires far more energy than passive sensing—and the area over which the animal senses its prey.

They propose that the energetic constraints of the knifefish’s active sensing system leads to a restricted sensory space compared to passive-sensing animals.

By combining video analysis of prey capture behavior with computational modeling of the fish’s electrosensory capabilities, the scientists were able to quantify and compare the 3D volumes for sensation and movement for the first time in any animal. They found that the sensory volume (the size and shape of the space within which objects can be detected by an animal) overlaps the motor volume (the location in space that an animal can reach within a set time period). They suggest that this coupling may arise from constraints that the animal faces when using self-generated energy to probe its environment. They also suggest that the degree of overlap between sensory and movement volumes can provide insight into the types of control strategies that are best suited for guiding behavior.

... more about:
»Animal »behavior »movement »sensing »volume

Citation: Snyder JB, Nelson ME, Burdick JW, MacIver MA (2007) Omnidirectional sensory and motor volumes in electric fish. PLoS Biol 5(11): e301. doi:10.1371/journal.pbio.0050301

•Caption: A computer model of the knifefish illustrates the estimated SV for active sensing of prey (red) and stopping MV (blue). The backdrop shows a color map of the fish’s simulated self-generated electric field. SV barely exceeds the stopping MV, revealing that the fish invests just enough energy into active sensing to detect prey in time to stop. (Image: MacIver et al.)

CONTACT:
Malcolm MacIver
Northwestern University
2145 Sheridan Rd, Tech B224
Evanston, IL 60208-3111
+1-847-491-3540
+1-847-556-0173 (fax)
maciver@northwestern.edu

Andrew Hyde | alfa
Further information:
http://biology.plosjournals.org/perlserv/?request=getdocument&doi=10.1371/journal.pbio.0050301

Further reports about: Animal behavior movement sensing volume

More articles from Life Sciences:

nachricht New bioinformatics platform for the genome-based taxonomical classification of bacteria and archaea
21.05.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht 3D technology lets us look into the distant past
21.05.2019 | Eberhard Karls Universität Tübingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Planetologists explain how the formation of the moon brought water to Earth

21.05.2019 | Physics and Astronomy

New Measurement Device: Carbon Dioxide As Geothermometer

21.05.2019 | Earth Sciences

New bioinformatics platform for the genome-based taxonomical classification of bacteria and archaea

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>