Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A molecular switch is linked to a common breast cancer

12.11.2007
Researchers have discovered that a molecular switch in the protein making machinery of cells is linked to one of the most common forms of lethal breast cancer worldwide. The discovery by researchers at NYU School of Medicine could lead to new therapies for the cancer, called locally advanced breast cancer (LABC).

Although precise data isn’t available, LABC may account for 50 percent or more of breast cancers among women in developing countries, and 30 percent of breast cancers among socially disadvantaged and minority women in the United States. This type of cancer is defined by a large tumor that is about 2 inches or larger in diameter, about the size of a plum, when first diagnosed. The cancer may have spread into surrounding lymph nodes or other tissues. However, it hasn’t yet spread to more distant areas in the body.

Without treatment, fewer than 20 percent of patients with LABC are living five years after their diagnosis. Unfortunately, even with appropriate treatments, this cancer is deadlier than other types of breast cancer that are detected earlier.

With funding from the Breast Cancer Research Foundation and the Department of Defense, Robert J. Schneider, Ph.D., the Albert B. Sabin Professor of Molecular Pathogenesis, and Silvia C. Formenti, M.D., the Sandra and Edward H. Meyer Professor of Radiation Oncology and Chairwoman of Radiation Oncology, and their colleagues at NYU School of Medicine have made LABC the focus of a coordinated effort to understand the disease.

... more about:
»Cancer »Formenti »LABC »Molecular »Switch »breast »breast cancer

“This disease has not been sufficiently studied, in part because of the social, psychological, economic, and cultural barriers that may stand in the way of obtaining care,” says Dr. Formenti.

“Our study shows that an unusual molecular switch occurs that is essential for the development of these large tumors. We think that this switch could be a target for new therapies,” says Dr. Schneider.

The new study is published in the November 9, 2007 issue of the journal Molecular Cell.

Drs. Schneider and Formenti led the new study which found that two molecules were unusually abundant or “overexpressed” specifically in locally advanced breast cancers. Further analysis in mice revealed that the molecules orchestrated a switch in the use of messenger RNA, a kind of ferry service that carries information for making proteins. This switch, the researchers found, occurs when tumors become starved for oxygen, a condition known as hypoxia. The switch permits the selective expression of proteins that are required for tumors to carry out angiogenesis, the process of developing a blood supply. It also enables tumors to grow to a large size and to progress.

“The identification of the molecular switch and its importance for development of locally advanced breast cancer reveals realistic targets for the development of new therapeutics to block tumor angiogenesis and progression in breast and possibly other cancers,” says Dr. Schneider.

The authors of this study are: Drs. Formenti and Schneider; Ksenia Karpisheva; Steve Braunstein; Carolina Pola; Judith Goldberg; Tsivia Hochman; Herman Yee; Joan Cangiarella; and Rezina Arju. All are affiliated with NYU School of Medicine.

Pamela McDonnell | EurekAlert!
Further information:
http://www.nyumc.org

Further reports about: Cancer Formenti LABC Molecular Switch breast breast cancer

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>