Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop micro Petri dish for massively parallel growth and screening of micro-organisms

09.11.2007
Scientists of Top Institute Food & Nutrition, Wageningen University and Research Centre, NIZO food research and the MESA+ Institute for Nanotechnology in the Netherlands have developed a new technology that allows unprecedented miniaturisation of the growth of micro-organisms.

On a chip with the size of a postage stamp, more than one million cultures can be grown in parallel which opens up a wide range of uses from diagnosis of infection to the improvement of industrial bacteria. The corresponding paper ‘The micro Petri dish, a million-well chip for the culture and high-throughput screening of microorganisms’ has been published in Proceedings of the National Academy of Science (online Early Edition) on 7th November 2007.

A team of microbiologists and micro-engineering experts developed the chip that has the potential to meet the automation and miniaturisation needs of modern microbiology. The development of high-throughput bacterial screening methods has been slow in an era of advancements in fields like genomics and proteomics. The ‘micro Petri dish’ allows growth assays to catch up with other high-throughput technologies in the life sciences. ‘Besides that, the chip is readily manufactured, cheap and easy-to-use in a standard microbiology lab’ explain researchers Colin Ingham (WUR) and Johan van Hylckama Vlieg (NIZO).

The innovation is in the micro-engineering of a unique porous ceramic to create millions of wells that serve as growth areas for micro-organisms. The micron-scale wells of the chip can be regarded as an array of millions of “micro Petri dishes”, where bacteria or yeasts are efficiently supplied with nutrients from below through a porous membrane. By using this chip, assays for the detection and growth of micro-organisms will become faster and cheaper whilst it permits larger screening operations for improved industrial strains than have been possible to date.

TI Food and Nutrition (www.tifn.nl) is a unique public/private partnership that generates vision on scientific breakthroughs in food and nutrition, resulting in the development of innovative products and technologies that respond to consumer demands for safe, tasty and healthy foods. 'This project, a close collaboration between biotechnologists and nanotechnologists, is a good example of the trans-disciplinary approach we have developed', says Jan Sikkema, programme director at Top Institute Food and Nutrition.

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: Micro Petri dish Screening develop micro-organisms

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>