Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extracts of catfish caught in polluted waters cause breast cancer cells to multiply

08.11.2007
Exposing estrogen-sensitive breast cancer cells to extracts of channel catfish caught in areas with heavy sewer and industrial waste causes the cells to multiply, according to a University of Pittsburgh study being presented at the annual meeting of the American Public Health Association in Washington, D.C.

The abstract, number 159141, will be presented at a special session on “Contaminants in Freshwater Fish: Toxicity, Sources and Risk Communication,” at 8:30 a.m., Wednesday, Nov. 7.

The study, which tested extracts from channel catfish caught in the Allegheny and Monongahela rivers near Pittsburgh, suggests that the fish, caught in areas of dense sewer overflows, contain substances that mimic the actions of estrogen, the female hormone. Since fish are sentinels of water quality, as the canary in the coal mine is a sentinel of air pollution, and can concentrate fat soluble chemicals from their habitats within their bodies, these results suggest that pharmaceutical estrogens and xeno-estrogenic chemicals, those that mimic estrogens in the body, may be making their way into the region’s waterways.

“We believe there are vast quantities of pharmaceutical and xeno-estrogenic waste in outflows from sewage treatment plants and from sewer overflows, and that these chemicals end up concentrated and magnified in channel catfish from contaminated areas,” said Conrad D. Volz, Dr.P.H., M.P.H., principal investigator, department of environmental and occupational health, University of Pittsburgh Graduate School of Public Health. Sewer overflows result from inadequate sewer infrastructure, which releases raw, untreated sewage directly into area rivers during wet weather, according to Dr. Volz. “In Pittsburgh alone, 16 billion gallons of raw, untreated sewage are deposited into area rivers every year with major implications for public health.”

... more about:
»Cancer »breast »catfish »caught »cause »multiply

In the study, Dr. Volz and colleagues exposed extracts of catfish to estrogen-responsive and estrogen non-responsive human breast cancer cells. They found that catfish extracts caused the estrogen-responsive breast cancer cells to multiply by binding to and activating estrogen receptors – the proteins within cells that render the cells sensitive to estrogen – but had no effect on the estrogen negative cell line. Extracts of fish caught in areas heavily polluted by industrial and municipal wastes resulted in the greatest amount of cell growth. This growth occurred regardless of the sex of the fish.

According to Dr. Volz, the next step in this research is to identify the specific estrogenic chemicals and their sources in the local water and fish. “These findings have significant public health implications, since we drink water from the rivers where the fish were caught. Additionally, the consumption of river-caught fish, especially by semi-subsistence anglers, may increase their risks for endocrine-related health issues and developmental problems,” said Dr. Volz.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

Further reports about: Cancer breast catfish caught cause multiply

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>