Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the function of enzymes

08.11.2007
Fitting a key into a lock may seem like a simple task, but researchers at Texas A&M University are using a method that involves testing thousands of keys to unlock the functions of enzymes, and their findings could open the door for new targets for drug designs.

Texas A&M researcher Frank Raushel is part of a team of scientists who modified a technique called “molecular docking” to predict which molecule, called a substrate, triggers an enzyme into action, enabling them to decipher an enzyme’s function based on its structure alone.

The team’s paper was published in the journal Nature.

Most biological processes depend on enzymes, which are proteins that speed up chemical reactions, but the function of many enzymes remains a mystery.

... more about:
»docking »enzyme »function

“There are thousands of molecules that could be substrates [for a specific enzyme], and it would take too long to physically test them all,” Raushel said. “So we decided there was a need for a new method to determine the function of enzymes.”

The team started with the three-dimensional X-ray structure of an enzyme and then used a computer to try to fit different smaller molecules into the active site of the enzyme like pieces in a puzzle.

“Each enzyme has a specific size and shape,” Raushel said, “and you can use a computer to take small molecules and fit them into the active site of an enzyme one by one and score them on how well they fit. It’s more or less like fitting a key into a lock, but a lot more difficult since both the enzyme and the substrate are conformationally flexible.”

After the computer scores the molecules on how well they fit the enzyme, it ranks their order, and the researchers can then use the prioritized list to decide which molecules to physically test.

“As far as we know, this is the first time anybody has used molecular docking to predict the function of an enzyme,” Raushel said. “And it was verified by both experiment and X-ray crystallography.”

Other methods researchers use to try to determine an enzyme’s function or substrate specificity include physically testing thousands of possible molecules, gathering information from the nearby genes, and comparing the structure of the enzyme to that of other enzymes with known functions. “I think that in the end, we’ll have to use all of these methods together,” Raushel said. “One single method just won’t suffice.”

Raushel and his team plan to continue using their molecular docking method to find the function of other enzymes.

“We’re looking at other X-ray structures of proteins that have unknown functions, and we’re working to fill the gap,” Raushel said. “We’re trying to see how general this method is going to be or if we were just lucky in this particular case.”

Raushel and Texas A&M post-doctoral associate Ricardo Marti-Arbona work in conjunction with Brian Shoichet at the University of California, San Francisco, and Steven Almo from the Albert Einstein College of Medicine in New York.

Raushel hopes that over the next five years, the team can start to use its findings to locate potential targets for new drugs.

“Understanding the substrate specificity of certain enzymes could allow researchers to differentiate enzymes that catalyze one reaction in pathogenic organisms and a slightly different reaction in human systems,” Raushel said. “This would allow scientists to design [drugs] that would specifically target a pathogenic organism while not affecting the human enzyme.”

Amelia Williamson | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: docking enzyme function

More articles from Life Sciences:

nachricht From Receptor Structure to New Osteoporosis Drugs
20.11.2018 | Universität Zürich

nachricht Mutation that causes autism and intellectual disability makes brain less flexible
20.11.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>