Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opium and marijuana research go underground

02.11.2007
High-security Canadian mine used for biochemical research into opium poppy and cannabis

The world’s leading expert on the opium poppy has joined forces with researchers working on another infamous drug-producing plant – cannabis – in hopes of finding new uses for the much-maligned sources of heroin and marijuana.

Peter Facchini, professor of Biological Sciences and Canada Research Chair in Plant Biotechnology, has received a $650,000 NSERC Strategic Project Grant to create new varieties of opium poppy and cannabis that can be used for medicinal and industrial purposes, but will have no value as illicit drugs. And his work is taking him where few Canadians have gone before: Deep underground into the country’s ultra high-security medicinal marijuana growth facility.

“It’s certainly unusual for a plant biochemist to work in a copper mine hundreds of metres underground,” Facchini said. “This is a really great project that involves two of the world’s most important medicinal plants and is clearly unique in the plant biology field.”

Facchini and a new team of U of C postdoctoral researchers have teamed up with Saskatoon-based Prairie Plant Systems Inc., the National Research Council – Plant Biotechnology Institute, the Alberta Research Council and the University of Saskatchewan to create and study mutant varieties of opium poppy and cannabis in an unused portion of a copper and zinc mine near Flin Flon, Manitoba. Prairie Plant Systems produces medicinal marijuana under contract with Health Canada in this state-of-the-art facility.

Despite awareness of the importance of crop diversification for the long-term success of agriculture in Canada, few plants are cultivated for the production of high-value bioproducts. Opium poppy accumulates the alkaloids morphine, codeine and thebaine, and cannabis produces psychoactive cannabinoids and is used as a source of high-quality fiber and oil. The domestic market for codeine, morphine and oxycodone, which is derived from thebaine, is in excess of $1.6 billion annually, all of which is currently imported. “Canada is well-positioned to support the development of new crops cultivated for the production of valuable bioproducts, such as pharmaceuticals and fibers,” says Facchini. The research will identify novel genes for use in the metabolic engineering of opium poppy to accumulate high-value pharmaceutical alkaloids and to block cannabinoid production in cannabis. The latter will allow for a safe, legal, made-in-Canada cannabis crop that will have virtually none of the mind-altering chemical of marijuana but can be grown for hemp fibre, oil and food.

“The overall theme of this work is to modify plants to make them more useful as crops and chemical factories,” Facchini said. “Alberta is quickly becoming a leader in this area, especially in the area of biofuels. The immense potential of plants as sources of high-value bioproducts for the agricultural and pharmaceutical sectors also needs attention.”

The Biosecure Underground Growth Chamber is in a mine owned by Hudson Bay Smelting & Mining Co. Ltd. Facchini says it is a superb venue for his research. “It’s not what you would picture an old mine shaft to be. It’s clean and well-lit, it’s kept at a constant temperature and it’s one of the most secure places in the country,” he says. “It gives a whole new meaning to ‘mining our data.’”

Grady Semmens | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: Cannabis Facchini Source crop marijuana medicinal opium underground

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>