Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant vesicles, minibeads, and molecular motors : An original system to emulate intracellular transport

19.04.2002


Communication, clearly essential to humans, is also essential to cells, their elemental building blocks. In order to preserve organic cohesion, cells need to communicate with their environment, but they also need to ensure adequate communication between their various compartments.



These forms of intracellular exchange are essential and require the setting up of actual networks. Membrane transport tubes were evidenced some years ago, but their formation has up till now remained a mystery.

A team of CNRS (1) biologists and physicists working at the Institut Curie has now, for the first time, managed to produce in vitro a minimal system which emulates this form of intracellular transport.


This system should help better to understand intracellular protein transport. Furthermore the tubes it generates may lend themselves to a number of nanotechnological applications as well as to the study of antigens expressed on the surface of tumor cells.

The paper presenting this work is published in the Proceedings of the National Academy of Sciences of the USA on April 16, 2002.

Exchanges between cell compartments occur constantly, and are indispensable to the preservation of all main organic functions. In order properly to communicate, cells use molecules on which information is inscribed (2). But as this information cannot be deposited randomly within cells, it needs to be ferried, or transported.

Transportation was long ascribed to small bead-like structures known as vesicles. We now know that other, more elongated membrane structures are also involved in this process: these larger tubes carry molecules towards their destination. In order to study the transportation of intracellular information, the effectiveness of which is vital in vivo, teams headed by Bruno Goud ("Compartimentation et dynamique cellulaires" UMR 144 CNRS/Institut Curie) and Patricia Bassereau ("Physico-chimie Curie" UMR 168 CNRS/Institut Curie) have for the first time developed a minimal system which generates tubes in vitro on the basis of artificial membranes.

Microtubules used as railway tracks...

The system was developed using natural cell constituents.
The first phase involved emulating a microtubule-based support structure. These long strands are distributed homogeneously within cells and serve as railway tracks along which molecules are ferried to their destination.

...and molecular motors to drive the train forward

In order to transport molecules, you need engines, or motors that will pull them in the right direction. This is what kinesins do. Kinesins are made up of two chains tipped with mechanisms onto which the fuel needed for transportation (ie, ATP) can lock. This is how molecular motors can ?move down the track?, traveling in a given direction along the microtubules.

An original system based on giant vesicles and minibeads

Giant vesicles (diameter>10 microns) were prepared: basically, these are large pockets made up of a single lipid membrane and filled with fluid. Constitutionally, these vesicles resemble the membrane-surrounded cell compartments from which information-inscribed molecules travel. The vesicles? largeness makes them easy to visualize with microscopes and furthermore provides a sufficient store of membrane - as the experiment does not provide for membrane renewal, contrary to what happens in vivo.
The research team then decided to use small polysterene beads (100 nm) coated with molecules devised to lock on to the giant vesicle at one end, and to the kinesins at the other.

The two bead locking links (to the vesicle and to the kinesins) are biotin ’handles’ (a vitamin used here as a fixation molecule)
Once the polysterene bead has locked on to the giant lipid vesicle membrane, it starts stretching it, as the kinesin ’arms’ pull it out, their ’feet’ meanwhile rolling along the network of in vitro replicated microtubules.

The tube formation mechanism is very tricky as it involves applying just the right amount of traction to the vesicle membrane, while protecting it against possible tears.
This artificial and sensitive system uses beads as a sort of ?resistor? to help avoid tube rupture. The cellular equivalent to this mechanism is not yet fully understood but may well correspond to a protein complex surfaced with a number of different motors.

A network of tubes emulating tubes in live cells

A number of very fine tubes (with diameters of a few dozen nanometers) were thus produced by stretching the membrane from a number of different bead anchoring sites on the surface of the vesicle.

Once the process was initiated, the tubes proceeded to grow and generate a complex microtubule-aligned network, as expected. This network is similar to the one which forms in vivo in the endoplasmic reticulum or the Golgi apparatus.

This minimal and original system thus provides for the generation of membrane tubes with a very limited number of inputs: lipid vesicle membranes, kinesins, microtubules, ATP.

Possible applications?
  • In cell biology : This minimal system is a significant measure of progess in terms of cell transport studies, a broad area of research of great relevance to a number of different fields. Hence the significance of tool optimization. However, inter-compartmental information transmission involves many different players both for direction selection and for actual transmission. Which is why this minimal system, which is easy to replicate in vitro, should help speed up experiments in cell transport. It will in particular make it easy to add ?extraneous? elements to base preparations so as to observe their direct impact, simple comparison to the reference system thus allowing for easy assessment of these elements? possible role in cell transport. Until now, visualizing given molecular functions involved de-activating other molecules, a task both complex and fastidious.

  • In nanotechnology : In the future, nanotechnologies are going to make very many new applications possible. If tubes within cells transport molecules, why couldn?t they transport pre-selected objects in vitro ? One possible application involves using nanotubes to transport fluids and thus create nanoreactors. Another, making these tubes solid so as to generate fibers which can then be used, inter alia, as nanooscillators. And these are but a few of the new investigative possibilities being considered...

  • In oncology : Analyzing membrane proteins in cancer cells is hard work. Scientists are thus contemplating systems which would allow them to ?pull out? artificial tubes onto which they would slide the proteins they wish to study. These systems would be made up of beads onto which would be placed antibodies specific to given tumoral antigens expressed on the surface membranes of cancer cells, so as to allow for the sorting and typing of these antigens.

    Catherine Goupillon | alphagalileo

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>