Stressed intestine can give rise to food allergy

The intestines of mice which have been subjected to stress, overreact to certain nutritional substances. PhD biologist Annette van Kalkeren from the University of Amsterdam has investigated the relationship between stress and the occurrence of food allergies and various intestinal disorders.

The biologist investigated the reaction of pieces of mouse intestine to egg albumin, a substance found in eggs. Just like humans, mice can become allergic to the substance. However, mice only become allergic if they are injected with the substance and not as a result of eating it. The aim of the study was to investigate whether mice could become allergic to egg albumin if they ate it whilst stressed. The intestinal wall becomes more permeable under stressful conditions. Harmful substances penetrate the permeable intestinal wall where they then cause a panic response by the immune system. That could be the start of an allergy. The intestines of allergic mice demonstrate, just as in humans, a diarrhoea response if they come into contact with egg albumin. The cells in the intestinal wall then excrete salt and water. Research revealed that the intestines of non-allergic mice also sometimes exhibited a localised diarrhoea reaction if they came into contact with egg albumin. However, the localised diarrhoea occurred much more frequently in the intestines of mice which had been deliberately stressed prior to the experiment. Furthermore, the intestines of mice subjected to prolonged stress were much more sensitive for neurotransmitters from nerve cells which cause diarrhoea and the contraction of the intestinal muscles. Annette van Kalkeren used a systematic treatment to stress the mice. The mice had to spend several hours in a narrow tube. Sometimes they were also placed in a cold environment. A number of mice were subjected to a maximum of three days of social isolation. Some also had to swim for three minutes. The excretion of salt and water is a response of the intestines to wash out unwanted substances. However, the intestinal wall is then much more permeable to allergens. Whether or not this has a function is not known. The Amsterdam researcher suspects that a higher permeability promotes the immune response. Antigens from the body can then get closer to the intestinal content. The defence of the body is then pushed forward so to speak. However, during chronic stress the defence of the body is weakened and allergens can penetrate to deep into the body. Food allergies and various intestinal diseases, such as Crohn`s disease, ulcerative colitus and irritable bowel syndrome can in part be caused or enhanced by chronic stress. The mechanism behind this has yet to be elucidated.

Media Contact

Michel Philippens alphagalileo

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors