A new peptide communication factor enabling bacteria to ‘talk to each other’

Bacteria are traditionally considered unicellular organisms. However, increasing experimental evidence indicates that bacteria seldom behave as isolated organisms. Instead, they are members of a community in which the isolated organisms communicate among themselves, thereby manifesting some multi-cellular behaviors.

In an article to be published Friday (Oct. 26) in the journal Science, the Hebrew University scientists describe the new communication factor they have discovered that is produced by the intestinal bacteria Escherichia coli. The new factor is secreted by the bacteria and serves as a communication signal between single bacterial cells.

The research was carried out by a group headed by Prof. Hanna Engelberg-Kulka of the Department of Molecular Biology at the Hebrew University –Hadassah Medical School. It includes Ph.D. student Ilana Kolodkin-Gal , and a previous Ph.D. student, Dr Ronen Hazan. In addition, the research included Dr Ariel Gaathon from the Facilities Unit of the Medical School.

The communication factor formed by Escherichia coli enables the activation of a built-in “suicide module” which is located on the bacterial chromosome and is esponsible for bacterial cell death under stressful conditions. Therefore, the new factor has been designated EDF (Extra-cellular Death Factor).

While suicidal cell death is counterproductive for the individual bacterial cell, it becomes effective for the bacterial community as a whole by the simultaneous action of a group of cells that are signaled by EDF. Under stressful conditions in which the EDF is activated, a major sub-population within the bacterial culture dies, allowing the survival of the population as a whole.

Understanding how the EDF functions may provide a lead for a new and more efficient class of antibiotics that specifically trigger bacterial cell death in the intestine bacteria Escherichia coli and probably in many other bacteria, including those pathogens that also carry the “suicide module.”

The discovered communication factor is a novel biological molecule, noted Prof Engelberg-Kulka. It is a peptide (a very small protein) that is produced by the bacteria. The chemical characterization of the new communication factor was particularly difficult for the researchers because of two main reasons: it is present in the bacterial culture in minute amounts, and the factor decomposes under the conditions that are routinely used during standard chemical characterization methods. Therefore, it was necessary to develop a new specific method. The research has also identified several bacterial genes that are involved in the generation of the communication factor, said Prof. Engelberg-Kulka. .

The research on this project was supported by the Israel Science Foundation (ISF), the U.S.-Israel Binational Science Foundation (BSF), and the American National Institutes of Health (NIH).

Media Contact

Jerry Barach The Hebrew University of Jerusal

More Information:

http://www.huji.ac.il

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors