Broccoli sprout-derived extract protects against ultraviolet radiation

The results in human volunteers, backed by parallel evidence obtained in mice, show that the degree of skin redness (erythema) caused by UV rays, which is an accurate index of the inflammation and cell damage caused by UV radiation, is markedly reduced in extract-treated skin.

Importantly, notes investigator Paul Talalay, M.D., professor of pharmacology, this chemical extract is not a sunscreen. Unlike sunscreens, it does not absorb UV light and prevent its entry into the skin. Rather, the extract works inside cells by boosting the production of a network of protective enzymes that defend cells against many aspects of UV damage. Consequently, the effects are long-lasting; the protection lasts for several days, even after the extract is no longer present on or in the skin.

As skin cancer incidence is rising dramatically due to the escalating exposure of aging populations to the UV rays of the sun, Talalay says that “treatment with this broccoli sprout extract might be another protective measure that alleviates the skin damage caused by UV radiation and thereby decreases our long-term risk of developing cancer.”

The protective chemical agent in the broccoli sprout extracts is sulforaphane. It was first identified by Talalay and his colleagues more than 15 years ago and has been shown to prevent tumor development in a number of animals treated with cancer-causing chemicals.

After first testing mouse models of skin cancer to confirm sulforaphane’s protective effects, Talalay and his team tested six healthy volunteers. Each one was exposed to a pulse of UV radiation on small patches of their skin (less than 1 inch in diameter) that were either treated or untreated with different doses of broccoli extract.

At the highest doses, UV-induced redness and inflammation were reduced by an average of 37 percent. The extracts were protective even when applied three days prior to UV exposure. The protection did vary considerably among the subjects, ranging from 8 percent to 78 percent, which Talalay notes may be due to genetic differences among individuals, local differences in the skin, or other factors such as dietary habits. He also points out that conventional sunscreens were essentially ineffective in these experiments.

Media Contact

Nick Zagorski EurekAlert!

More Information:

http://www.jhmi.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors