Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applications include zapping cancer cells

23.10.2007
MIT works toward novel therapeutic device

MIT and University of Rochester researchers report important advances toward a therapeutic device that has the potential to capture cells as they flow through the blood stream and treat them. Among other applications, such a device could zapp cancer cells spreading to other tissues, or signal stem cells to differentiate.

Their concept leverages cell rolling, a biological process that slows cells down as they flow through blood vessels. As the cells slow, they adhere to the vessel walls and roll, allowing them to sense signals from nearby tissues that may be calling them to work. Immune cells, for example, can be slowed and summoned to battle an infection.

"Through mimicking a process involved in many important physiological and pathological events, we envision a device that can be used to selectively provide signals to cells traveling through the bloodstream," said Jeffrey M. Karp of the Harvard-MIT Division of Health Sciences and Technology. "This technology has applications in cancer and stem cell therapies and could be used for diagnostics of a number of diseases."

The team, led by Karp, started with technology to induce cell rolling for research. With an implantable therapeutic device in mind, they improved that cell rolling technology to make it safe, more stable and longer lasting.

The improvements are described in the October 20 online issue of the journal Langmuir, published by the American Chemical Society.

In the body, P-selectin and other selectin proteins regulate cell rolling in blood vessels. When P-selectin is present on a vessel's inner wall, cells that are sensitive to it will stick to that patch and begin to roll across it.

To induce rolling in the laboratory, the original technology weakly adheres P-selectin to a glass surface and flows cells across it. This surface treatment remains stable for several hours then breaks down. "While this method is useful for experiments, it's not good for long-term stability," said Karp. An implantable device needs a coating that lasts weeks or even months so that patients won't need to come in frequently for replacements.

To improve the technology, the team experimented with several chemical methods to immobilize P-selectin on a glass surface. They identified a polyethelene glycol (PEG) coating that strongly bonded to P-selectin. This coating is also "non-fouling," meaning it does not react with or accumulate other proteins, so it is potentially safe for use in an implant.

P-selectin remains stable on this coating for longer than the original technology. In tests with microspheres coated with a molecule that interacts with P-selectin, these spheres slowed down significantly as they flowed over the surface coated with layers of PEG and P-selectin. The effect was stable past four weeks, the longest the devices have been tested.

To validate that this technology works with cells that are sensitive to P-selectin, the team flowed neutrophils (white blood cells) across the coated surface. They too slowed and rolled on surfaces treated with the new coating, and the effect again lasted for at least four weeks.

The next step is translating these results to animal studies and using the technology to slow and capture stem cells and cancer cells circulating in the blood stream.

Ultimately CellTraffix, Inc., a sponsor of this technology and its licensee, wants to apply the technique to a device that is either implanted into the blood stream or appended as a shunt. In addition to PEG and selectin molecules, the device would also include a therapeutic agent. Such an agent would interact only with certain cells for a specific purpose.
According to University of Rochester biomedical engineering professor Michael King, who developed the concept for adhesive capture and reprogramming of cells, the device could, for example, slow down metastatic, or spreading, cancer cells and kill them.

Karp also has appointments at Harvard Medical School and Brigham and Women's Hospital. King is also a member of the scientific advisory board of CellTraffix, Inc. (formerly Stem Capture, Inc.), a funder of the work. Their coauthors include first author Seungpyo Hong, a postdoctoral associate in MIT's Department of Chemical Engineering; MIT undergraduates Huanan Zhang, Jennifer Q. Zhang, and Jennifer N. Resvick, also of chemical engineering; graduate student Dooyoung Lee of the University of Rochester; assistant professor Ali Khademhosseini of the Harvard-MIT Division of Health Sciences and Technology and Brigham and Women's Hospital, and MIT Institute Professor Robert Langer.

In addition to funding from CellTraffix, Inc., the work was also funded by the Materials Research Science and Engineering Center Program of the National Science Foundation.

Written by Elizabeth Dougherty, Harvard-MIT Division of Health Sciences and Technology

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Cancer Coating P-selectin blood vessel include stable therapeutic vessel

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>