Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

West Nile virus' spread through nerve cells linked to serious complication

22.10.2007
Scientists believe they have found an explanation for a puzzling and serious complication of West Nile virus infection.

Researchers at Washington University School of Medicine in St. Louis and Utah State University showed that West Nile virus can enter a nerve cell, replicate and move on to infect other nearby nerve cells. Viruses traveling this infectious pathway can break into the central nervous system, triggering a condition known as acute flaccid paralysis that leaves one or more limbs limp and unresponsive. No treatment is currently available for this complication. Patients must undergo rehabilitation to relearn to use the affected limb.

Injection of a West Nile virus antibody, created by Washington University and a private biotechnology firm, blocked the complication in laboratory animals. The results appear online in the Proceedings of the National Academy of Sciences.

Preliminary data suggests there will be approximately 4,000 to 5,000 severe West Nile virus infections in the United States in 2007. First isolated in Africa in 1937, West Nile spread to the Middle East, Europe, and Asia before arriving in the United States in 1999. Most infections with the virus are mild or symptom-free, but infections in people with weakened immune systems and those over 50 sometimes lead to serious complications or death.

Senior author Michael Diamond, M.D., Ph.D., associate professor of molecular microbiology, of pathology and immunology and of medicine, began the new study because of a puzzling contrast in the ways West Nile virus infection affects the central nervous system.

One form of infection, encephalitis, causes inflammation of the brain and leads to fever, headaches, weakness and seizures. It is much more likely to occur in patients who are elderly or have weakened or suppressed immune systems. The other form of infection, acute flaccid paralysis, strikes patients with weakened immune systems but also affects a significant number of patients with healthy immune systems.

"Based on our mouse model of West Nile virus infection, we already knew that the most likely cause of encephalitis was virus in the blood breaking through the blood-brain barrier to infect the brain," says Diamond. "But the epidemiological contrast suggested to us that there might be a fundamentally different infectious mechanism behind paralysis."

In experiments led by Melanie Samuel, a graduate student in Diamond's lab, researchers found that West Nile virus could spread in either direction along the branches of neurons in culture. Samuel used an electron microscope to observe the virus traveling down nerve branches in small capsules known as vesicles. Researchers also found infected nerve cells released virus.

To test their results in an animal model, scientists used a suture to close off the sciatic nerve in hamsters. Then they injected West Nile virus directly into the nerve, either above the suture (i.e., closer to the spine) or below it. Animals who received an injection below the suture came down with encephalitis. But those whose injections were above the suture developed both encephalitis and paralysis because the virus was able to follow the sciatic nerve back to the central nervous system.

An untreated human patient's chances of developing flaccid paralysis from West Nile may come down to a roll of the dice, Diamond speculates. To break through the blood-brain barrier and cause encephalitis, high levels of the virus have to build up in the blood. In the elderly or patients with weakened immune systems, West Nile is able to replicate relatively freely in areas like the skin and lymph tissues, providing additional copies of the virus that build up in the blood.

"Paralysis might not require such high levels of infection," he theorizes. "What may happen instead is if a mosquito bites you and the virus is able to replicate in the vicinity of a nerve, by the time the immune system has cleared the infection in the skin, a small amount of virus may already be following the nerve back to the spinal cord. Unless you have a robust antibody response, you're probably not going to clear that fast enough, and you might get paralysis."

When scientists injected a therapeutic antibody the day after the viral injection, it blocked both encephalitis and paralysis. The antibody, developed by Washington University and Macrogenics Inc., has been licensed to Macrogenics for commercial development and is in early clinical trials in humans.

"We already knew the antibody could block encephalitis," notes Diamond, in whose laboratory the antibody was originally developed. "The levels of antibody in the central nervous system are relatively low compared to the rest of the body, but they're still high enough to block paralysis."

Diamond plans follow-up studies to see how long after infection the antibodies can be injected and still retain their protective effect against paralysis. He also plans to test whether the virus is sitting back and passively letting the nerve cell move it along or actively pushing itself forward by manipulating nerve cell physiology.

Diamond and co-author John D. Morrey have a financial interest in the antibody that is regulated in accordance with Washington University's conflict-of-interest policies.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>