Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers biomaterial debuts in clinical trials of new stent

22.10.2007
A revolutionary, new biomaterial, developed at the New Jersey Center for Biomaterials (NJCBM) at Rutgers University, has moved from the lab bench to field testing in record time. This achievement, a product of a breakthrough methodology in biomaterials discovery, is the enabling technology behind a coronary stent undergoing its first-in-human clinical trial in Germany and in Brazil.

Stents are tiny tubes inserted into diseased arteries to keep them open. The stent being tested, designed by REVA Medical Inc. of San Diego, is intended to act as a temporary scaffold to support the blood vessel during the healing process and maintain blood flow. It subsequently dissolves, leaving the patient free of any permanent implant.

Rutgers’ Joachim Kohn is reporting on his new combinatorial biomaterials discovery process and the promise it holds for the medical device industry during TCT 2007 (Transcatheter Cardiovascular Therapeutics), the world's premier conference on interventional cardiology, which begins Saturday, Oct. 20 in Washington, D.C. Also reporting at the conference, Dr. Eberhard Grube of the HELIOS Heart Center in Germany describes the initial clinical experience from the RESORB trial that is evaluating the stent’s safety in approximately 30 patients at multiple sites in Germany and Brazil.

Fully degradable coronary stents have been explored for more than 20 years. But, according to Kohn, no clinically useful products could be developed, in part, because of the lack of polymers that could meet the extremely demanding performance requirements. Kohn and his team addressed this problem by developing a library of degradable polymers comprising 10,000 theoretically possible compositions and applying combinatorial methods to identify the best possible biomaterial. The resulting material was selected for use in combination with REVA’s novel stent design.

... more about:
»Biomaterial »Design »Kohn’s »Polymer »Stent

“We’ve applied novel design and advanced biomaterials solutions to create a significant advance in stent technology,” said Dr. Robert Schultz, REVA’s president. “This approach has allowed for us to bring it to the clinical stage quickly.”

“Our unconventional discovery process integrates combinatorial polymer libraries, high-throughput testing and computational modeling. This results in a much faster path to prototype development and a reduction in the cost and risk associated with the use of new, proprietary biomaterials,” said Kohn, a Board of Governors Professor who directs the New Jersey Center for Biomaterials at Rutgers.

Michael J. Pazzani, vice president for research and graduate and professional education at Rutgers, spoke of the impact of Kohn’s work on the medical device industry. In addition to REVA, Rutgers has licensed the portfolio of Kohn’s patents to several other companies. “One licensee was able to obtain FDA clearance for a new hernia repair device using one of Kohn’s polymers on a three-year track from concept to FDA market clearance,” Pazzani said. “Another is working with Kohn's combinatorial discovery process to identify an ideal polymer for their ophthalmic drug delivery device.”

The significance of Kohn’s work is related to its general applicability to many different biomaterials design challenges as evidenced by the diversity of products being commercialized using this discovery process.

The scientific foundations of the new biomaterials discovery process are being developed with support to the New Jersey Center for Biomaterials and the Kohn Laboratory from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health.

In collaboration with REVA, Kohn and his colleagues developed a polymer that is exceptionally strong and highly suitable for stent applications. In addition, the material was designed to be radio-opaque so it is X-ray visible, a property critical to the proper placement of the stent in the artery. It is also biodegradable and biocompatible.

Pazzani said that reaching the clinical trial stage is an accomplishment for the university and a great source of pride. “This is a major achievement for our state, a success story for our Office of Corporate Liaison and Technology Transfer,” he said, and, Pazzani added, “it is significant validation for the work of Rutgers scientists.”

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

Further reports about: Biomaterial Design Kohn’s Polymer Stent

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>