Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossilized cashew nuts reveal Europe was important route between Africa and South America

19.10.2007
Cashew nut fossils have been identified in 47-million year old lake sediment in Germany, revealing that the cashew genus Anacardium was once distributed in Europe, remote from its modern “native” distribution in Central and South America.

It was previously proposed that Anacardium and its African sister genus, Fegimanra, diverged from their common ancestor when the landmasses of Africa and South America separated. However, groundbreaking new data in the October issue of the International Journal of Plant Sciences indicate that Europe may be an important biogeographic link between Africa and the New World.

“The occurrence of cashews in both Europe and tropical America suggests that they were distributed in both North America and Europe during the Tertiary and spread across the North Atlantic landbridge that linked North America and Europe by way of Greenland before the rifting and divergence of these landmasses,” explain Steven R. Manchester (University of Florida), Volker Wilde (Forschungsinstitut Senckenberg, Sektion Palaeobotanik, Frankfurt am Main, Germany), and Margaret E. Collinson (Royal Holloway University of London, UK). “They apparently became extinct in northern latitudes with climatic cooling near the end of the Tertiary and Quaternary but were able to survive at more southerly latitudes.”

The cashew family (Anacardiaceae) includes trees, shrubs, and climbers prominent in tropical, subtropical, and warm temperate climates around the world. A key feature is an enlarged hypocarp, or fleshy enlargement of the fruit stalk, which is a specialized structure known only in the cashew family.

... more about:
»Anacardium »cashew »genus »nut

The researchers examined possible fossil remains found in the Messel oil shales, near Darmstadt, Germany, which are dated to about 47 million years before the present and reveal the presence of a “conspicuously thickened” stalk. In four out of five specimens, this hypocarp was still firmly attached to the nut, indicating that the two were dispersed as a unit. According to the researchers, the size and shape of the hypocarp – like a teardrop and two or three times longer than it is wide – support its assignation to the Anacardium genus, common to South America, rather than the African Fegimanra genus, though the fossils have features common to both.

“The occurrence of Anacardium in the early Middle Eocene of Germany suggests . . . that the two genera [Anacardium and Fegimanra] diverged after dispersal between Europe and Africa,” the researchers write. “Presumably, Anacardium traversed the North American landbridge during the Early or Middle Eocene, at a time of maximal climatic warmth, when higher latitudes were habitable by frost-sensitive plants.”

The astoundingly close similarity between the fossil and modern day Anacardium also indicates little evolutionary change to the cashew since the mid-Eocene period: “Although cashews have been cultivated for human consumption for centuries, it is clear that they were in existence millions of years before humans. The cashew had already evolved more than 45 million years ago, apparently in association with biotic dispersers,” they write.

Suzanne Wu | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: Anacardium cashew genus nut

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>