Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Use Plant Defence for Genetic Modification

19.10.2007
Bacteria that cause tumours in plants modify plant genomes by skilfully exploiting the plants' first line of defence. Utilising the plant's own proteins, bacterial genes infiltrate first the nucleus then the plant genome, where they reprogramme the plant's metabolism to suit their own needs. This process was recently discovered as part of an Austrian Science Fund FWF project and was published today in SCIENCE.

The genetic manipulation of plants is both, a subject of great controversy in Europe and a tactic already practiced by certain bacteria. The soil bacterium known as crown-gall bacterium (Agrobacterium) manipulates the genetic make-up of plants by inserting its own DNA into the nuclei and, consequently, into the genetic material of the plant cells. The genetically modified plants are then reprogrammed to ensure uninhibited cell division and produce nutrients to feed the bacteria. What was not previously understood is exactly how bacteria genes infiltrate the cell's nucleus – particularly as the defence mechanisms of plant cells react so rapidly to bacterial invasion.

WEAK DEFENCES
A surprising detail of this process has now been uncovered by the team of Prof. Heribert Hirt working at the Max F. Perutz Laboratories at the University of Vienna and the URGV Plant Genomics Institute near Paris which Hirt joined as future director earlier this year. VIP1, a plant cell protein, is at the heart of their research. It was already known that this protein supports the transport of bacterial DNA known as T-DNA into the nucleus, and yet the exact role of VIP1 was unclear. Prof. Hirt explains: "We were able to show that VIP1 is a protein that regulates various genes designed to defend against bacterial invasion. However, VIP1 only occurs initially in the cytoplasm of cells and – in order to fulfil its role as a regulator – it then needs to migrate into the nucleus. It is precisely this movement that the bacterium exploits in order to inject its T-DNA into the nucleus." Prof. Hirt compares this strategy, which inevitably means that the plants own defences cause its downfall, to the famous Trojan Horse.
FRIEND & FOE
Prof. Hirt explains further – "Plants have an immune defence mechanism that is triggered when the plant detects certain molecules of the invader and works by activating genes in the nucleus." Once the invader has been detected, specific protein kinases in the cytoplasm are activated. These are enzymes that regulate the activity of other proteins by adding phosphate groups to them. One of the proteins phosphorylated by these protein kinases is VIP1, which is only granted access to the nucleus after this phosphorylation, so that it can activate the relevant defence genes there.

The following model illustrates the early processes in an infected plant cell. The invasion of T-DNA and the identification of the bacterium as an invader occur simultaneously. While protein kinases phosphorylate VIP1 in the cytoplasm, the bacterial T-DNA adheres to VIP1, thereby enabling it to infiltrate the nucleus unnoticed. The result is the joint infiltration of both friend and foe. Once inside the nucleus, the T-DNA is inserted into the plant genome and the process of tumour formation begins while the activated defence genes simultaneously organise the plant cell's defence mechanisms. It is too late though – the cell has already been transformed.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200710-2en.html

Further reports about: Nucleus T-DNA VIP1 bacterium genes

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>