Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glue inside the cell: Ubiquitin builds up an immune response

19.10.2007
Ubiquitin is a small protein, which can be attached to other cellular proteins, a process known as ubiquitination. Discoveries in the 1980 th on a key function of ubiquitination in the regulation of protein degradation where awarded with the Nobel Prize for chemistry in 2004.

A study headed by the Junior Group of Dr. Daniel Krappmann (GSF - National Research Center for Environment and Health, Institute of Toxicology) in collaboration with Dr. Jürgen Ruland (TU Munich) and Dr. Claus Scheidereit ( Max-Delbrück-Center , Berlin ) now reports a novel finding about ubiquitination as a key event for the activation of an immune response. (EMBO J. AOP, 18.10.2007).

The acquired immune response is triggered after specific engagement of foreign peptides (antigens) by receptor molecules on white blood cell (lymphocytes). Cellular signaling pathways are responsible for the activation of lymphocytes. Krappmann and co-workers present evidence, that in T cells, which constitute a subgroup of lymphocytes, ubiquitin is attached to the Malt1 protein in response to antigen stimulation. Malt1 is part of the CBM (Carma1-Bcl10-Malt1) complex that constitutes a crucial switch for the activation of the immune defense. Using biochemical, molecular and genetic techniques the scientists could prove that this novel Malt1 ubiquitination is an essential step in the regulation of T cell activation.

‘Mechanistically, ubiquitin is virtually acting as all-purpose glue that links different protein components inside the cell’, Krappmann explains. ’However, ubiquitination provides an important advantage compared to conventional adhesives: It is reversible, meaning that the associations can be resolved’.

... more about:
»Malt1 »Ubiquitin »immune »lymphocyte »ubiquitination

This process of de-ubiquitination is constantly happening in cells and it could contribute to prevent an over-shooting activation of T cells. Unopposed lymphocyte activity is responsible for many chronic diseases, autoimmunity or even lymphoma development. Future work must address the status of Malt1 ubiquitination under pathological conditions, for instance in Malt1 dependent lymphomas. By this the scientists hope to demonstrate the potential of targeting the ubiquitin system for the development of novel therapeutic approaches.

Michael van den Heuvel | alfa
Further information:
http://www.gsf.de

Further reports about: Malt1 Ubiquitin immune lymphocyte ubiquitination

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>