A previously unknown coupling between obesity and diabetes

Diabetes is a metabolic condition in which the body does not form sufficient quantities of insulin or in which the insulin that is formed does not have sufficient effect. The most common form of the disease is type 2 diabetes, which is the variant that adults can develop.

Most people who develop type 2 diabetes are overweight. Fat can accumulate in the muscles and liver of an obese person, leading to cell damage that in turn leads to a defect in the signalling from insulin. The result is an increase in the blood sugar level, and diabetes develops.

“The faulty storage of fat in the muscle cells interferes with the signal from the insulin that should stimulate increased absorption of sugar by the cells. The fat is stored in the cells in the form of fat droplets, and we have studied in detail how these are formed and how they grow. This has enabled us to show how the insulin signal is disrupted”, says Professor Sven Olof Olofsson, director of the Wallenberg Laboratory at the Sahlgrenska Academy.

The research project used several advanced microscopy techniques to study lipid droplets in cultured muscle cells. It became clear that the lipid droplets merged with each other inside the cell by a process that involved a protein known as “SNAP23”. This protein has another, independent, function – that of passing the insulin signal onwards into the cell.

“It appears that the SNAP23 is being 'stolen' from the insulin signalling process when the cell starts to pack fat, and this causes the defect that subsequently leads to diabetes. If we can find out more about how this works in detail, we may be able to influence the process and protect patients from developing diabetes”, says Pontus Boström, PhD student at the Sahlgrenska Academy.

Further research will be necessary before the results can be tested in patients.

The results will be published in the next issue of the journal Nature Cell Biology.

Journal: Nature Cell Biology
Article title: SNARE proteins mediate fusion between cytosolic lipid droplets with implications for insulin sensitivity

Authors: Pontus Boström, Linda Andersson, Mikale Rutberg, Jeanna Perman, Ulf Lidberg, Bengt R. Johansson, Julia Fernandez-Rodriguez, Tommy Nilsson, Jan Borén and Sven-Olof Olofsson.

For more information, contact: Professor Sven Olof Olofsson, telephone: +46 31 342 1956, e-mail: sven-olof.olofsson@wlab.gu.se Dr. Pontus Boström, telephone: +46 31 342 2947, e-mail: pontus.bostrom@wlab.gu.se

Media Contact

Elin Lindström Claessen idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors