Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bio-engineering of blood vessels

16.04.2002


Blood vessel prostheses work best when the biochemical and mechanical properties match reality as much as possible and when they are made of biodegradable material. To this end tissue technologists grow natural vascular wall cells, endothelial cells, in a biodegradable tube made of collagen. According to Professor István Vermes tissue technologists are overly concerned with developing stem cells, necessary to build blood vessels, and not enough with the development of the vascular skeleton or scaffold, serving as a framework for those stem cells. During his address on the acceptance of the office of professor in the Molecular Aspects of Cell and Tissue Technology (on 11 april 2002) Vermes gave his vision on the bio-engineering of blood vessels. Besides professor at the University of Twente (The Netherlands) Vermes is doctor-clinical chemist and educator in the regional hospital Medisch Spectrum Twente in Enschede, and special professor in Laboratory Medicine at the Semmelweis Medical University in Budapest.

According to Vermes the key to successful development of artificial human tissue and organs lies in the structure and composition of the porous framework on which cells grow. "The traditional method starts with the development of a prosthesis made of artificial materials. I am concerned with bio-engineering a blood vessel, with biological materials as starting point. To this end we have to imitate all the natural functions of a vessel, including those of the scaffold with all functional biological materials such as growth factors. The skeleton has many more functions than just attaching and keeping cells together. It contains information in the shape of growth factors, cytokines and surface-properties for the growth and development of cells. The chemistry, the shape and way in which it moves under the influence of stress are of vital importance to influencing the behaviour of cells. The skeleton emits signals that are passed on to the inside of the cell via receptors on the cell surface.“ The future of the stem cell, how it develops or dies because of apoptosis, is dependent on the information coming from the vascular skeleton.

A blood vessel is built up, from the inside out, of six different layers of successively endothelial cells, elastic layers of among them smooth muscle cells with around them connective tissue with lymph vessels and nerves. Vermes: "Endothelial cells are important in translating changes in the blood through the production of materials that in turn take care of the balance between blood and the surrounding tissue. To understand the function of these cells in the blood vessel and for the production of the artificial vessel, we study this process by directing ourselves towards cell division (proliferation) and cell death (apoptosis) of endothelial cells." Vermes` strategy is to grow stem cells that differentiate themselves selectively to smooth muscle cells and endothelial cells, and developing a scaffold in the shape of a porous tube of biodegradable and flexible polymers. The stem cells are seeded in the skeleton in the presence of, among others, growth factors.

Bernadette Koopmans | alphagalileo
Further information:
http://www.utwente.nl/nieuws/pers/nieuw/

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>