Mathematicians help unlock secrets of the immune system

The mathematicians, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), will investigate how the different cellular components of the immune system work together and devise a theoretical and computational model that can be used by immunologists, mathematicians, computer scientists, physicists and engineers.

The model promises to help a multi-disciplinary research community work together to bring about medical advances for patients. The project, the Immunology Imaging and Modelling (I2M) Network, is highlighted in the quarterly research highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC) this week.

The immune system is one of the most fascinating and complex systems in the human body and scientists still do not fully understand how it works. Immunology has traditionally been a qualitative science, describing the cellular and molecular components of the immune system and their functions. However, to advance our understanding of how the body fights disease there is a pressing need to better understand how the components work together as a whole and provide this information in a quantitative format which can be accessed by the entire scientific community.

Dr Carmen Molína-Paris, network co-ordinator and researcher at the University of Leeds, explains: “A multi and cross-disciplinary, cohesive and active approach is urgently required. The ability to track parasites and cells in real time using novel imaging techniques is allowing exciting new insights and will help us measure the interactions between the different parts of the immune system. This will provide a theoretical and computational model of the immune system, giving a complete picture that researchers from across all disciplines can refer to and draw upon.

“Mathematical immunology is maturing into a discipline where modelling helps everyone to interpret data and resolve controversies. Most importantly, it suggests novel experiments allowing for better and more quantitative interpretations.”

Steve Visscher, interim Chief Executive of BBSRC commented: “The new insight that this model will provide will naturally benefit the patient with the advances in healthcare it will lead to. BBSRC is committed to developing an active and cohesive cross-disciplinary community at the mathematics biology interface to enable a more quantitative and predictive biology.”

Media Contact

Michelle Kilfoyle alfa

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors