Umbilical cord gene expression signals premature babies' lung disease risk

Isaac Kohane and his team at the Children's Hospital, Boston, US, collected umbilical cord tissue samples from 54 premature infants born at less than 28 weeks of gestation, including 20 samples from infants who later developed BPD.

When DNA expression profiles were compared, the researchers found that infants who subsequently developed BPD had distinct gene expression signatures that differed from the ones who did not develop the disease, although the maternal characteristics (for example, the cause of delivery, race, or inflammation of the uterus) were similar. The genes that differed between the two groups involved chromatin remodelling and histone acetylation pathways.

“This has provided a rare opportunity to examine the influence of foetal physiology on postnatal health and development using the multiple tissues in umbilical cords as a proxy for a wide variety of tissues in the maternal-foetal unit,” says Kohane.

BPD occurs in 20-40% of infants born below 1000 grams and before 28 weeks of gestation, and means babies still need supplemental oxygen at 36 weeks postmenstrual age. It is the second leading cause of death among infants born within this gestational age and is characterised by inflammation and scarring in the lungs.

The study by Kohane and colleagues will contribute towards generating prognostic markers for disease from umbilical cord profiles.

Media Contact

Charlotte Webber alfa

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors