Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Would you like gene chips with your salad?

12.04.2002


The first public release of plant gene chip information is being launched at the Society for Experimental Biology conference in Swansea on Friday 12th April. Scientists from the Nottingham Arabidopsis Stock Centre (NASC), part of a multi-million pound resource network, will announce a newly accessible plant gene chip database which is available through the internet.



Unlike in GATTACA, where a drop of Ethan Hawke`s blood or an eyelash could tell you what genes he had, gene chips can tell you much more; not only which genes are there, but also how active they are, and therefore - what they may be doing.

Gene chips are produced in a similar manner to silicon chips, but instead of wires and transistors, the chips are covered with nucleotides and `virtual genes`. These chips allow scientists to take a small sample of an organism and then electronically show the simultaneous state of thousands of the RNA products from genes in that organism. This potentially gives you a `barcode` for the plant or animal and can be used in applications stretching from basic research to the real-time effects of GM manipulation, providing an exhaustive `contents` list for a transgenic organism. The `barcode` allow you to take a snapshot of the state of an organism telling you, for example, which genes are switched on in response to different exposures of light in a flower. The data is generated using Affymetrix gene chip technology and has been one of the hottest applications in the biological community for the last few years.


The gene chip is currently the only available chip for plants and covers the model plant Arabidopsis, at present covering 8000+ genes, to be increased to the plant`s full complement of 25 000 genes later this year. Arabidopsis is widely used in plant research because it is the only plant with a fully published and publicly available genome sequence.

"It is now possible to take a GM plant, compare it to a standard plant using gene chips, and precisely see ALL of the changes that have occurred. This takes away a great deal of the unknowns in genetic manipulation and will make the analysis of trangenic crops a more exact science," says Dr Sean May, director of NASC.

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>