Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery supports theory of Alzheimer's disease as form of diabetes

28.09.2007
Insulin, it turns out, may be as important for the mind as it is for the body. Research in the last few years has raised the possibility that Alzheimer’s memory loss could be due to a novel third form of diabetes.

Now scientists at Northwestern University have discovered why brain insulin signaling -- crucial for memory formation -- would stop working in Alzheimer’s disease. They have shown that a toxic protein found in the brains of individuals with Alzheimer’s removes insulin receptors from nerve cells, rendering those neurons insulin resistant. (The protein, known to attack memory-forming synapses, is called an ADDL for “amyloid ß-derived diffusible ligand.”)

With other research showing that levels of brain insulin and its related receptors are lower in individuals with Alzheimer’s disease, the Northwestern study sheds light on the emerging idea of Alzheimer’s being a “type 3” diabetes.

The new findings, published online by the FASEB Journal, could help researchers determine which aspects of existing drugs now used to treat diabetic patients may protect neurons from ADDLs and improve insulin signaling in individuals with Alzheimer’s. (The FASEB Journal is a publication of the Federation of American Societies for Experimental Biology.)

In the brain, insulin and insulin receptors are vital to learning and memory. When insulin binds to a receptor at a synapse, it turns on a mechanism necessary for nerve cells to survive and memories to form. That Alzheimer’s disease may in part be caused by insulin resistance in the brain has scientists asking how that process gets initiated.

“We found the binding of ADDLs to synapses somehow prevents insulin receptors from accumulating at the synapses where they are needed,” said William L. Klein, professor of neurobiology and physiology in the Weinberg College of Arts and Sciences, who led the research team. “Instead, they are piling up where they are made, in the cell body, near the nucleus. Insulin cannot reach receptors there. This finding is the first molecular evidence as to why nerve cells should become insulin resistant in Alzheimer’s disease.”

ADDLS are small, soluble aggregated proteins. The clinical data strongly support a theory in which ADDLs accumulate at the beginning of Alzheimer’s disease and block memory function by a process predicted to be reversible.

In earlier research, Klein and colleagues found that ADDLs bind very specifically at synapses, initiating deterioration of synapse function and causing changes in synapse composition and shape. Now Klein and his team have shown that the molecules that make memories at synapses -- insulin receptors -- are being removed by ADDLs from the surface membrane of nerve cells.

“We think this is a major factor in the memory deficiencies caused by ADDLs in Alzheimer’s brains,” said Klein, a member of Northwestern’s Cognitive Neurology and Alzheimer's Disease Center. “We’re dealing with a fundamental new connection between two fields, diabetes and Alzheimer’s disease, and the implication is for therapeutics. We want to find ways to make those insulin receptors themselves resistant to the impact of ADDLs. And that might not be so difficult.”

Using mature cultures of hippocampal neurons, Klein and his team studied synapses that have been implicated in learning and memory mechanisms. The extremely differentiated neurons can be investigated at the molecular level. The researchers studied the synapses and their insulin receptors before and after ADDLs were introduced.

They discovered the toxic protein causes a rapid and significant loss of insulin receptors from the surface of neurons specifically on dendrites to which ADDLs are bound. ADDL binding clearly damages the trafficking of the insulin receptors, preventing them from getting to the synapses. The researchers measured the neuronal response to insulin and found that it was greatly inhibited by ADDLs.

“In addition to finding that neurons with ADDL binding showed a virtual absence of insulin receptors on their dendrites, we also found that dendrites with an abundance of insulin receptors showed no ADDL binding,” said co-author Fernanda G. De Felice, a visiting scientist from Federal University of Rio de Janeiro who is working in Klein’s lab. “These factors suggest that insulin resistance in the brains of those with Alzheimer’s is a response to ADDLs.”

“With proper research and development the drug arsenal for type 2 diabetes, in which individuals become insulin resistant, may be translated to Alzheimer’s treatment,” said Klein. “I think such drugs could supercede currently available Alzheimer’s drugs.”

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: ADDL Alzheimer Diabetes Insulin Synapse binding individuals nerve cells neurons resistant

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>