Mice teeth explain the troubles with human wisdom teeth

However, for a long time scientists have suspected that genetic and developmental interactions may also influence species-specific properties.

Now, researchers at the University of Helsinki’s Institute of Biotechnology show how development affects the evolution of teeth, and have devised a simple developmental model to predict aspects of teeth across many species. The results were published in Nature.

In the study in the field of evolutionary developmental biology, the researchers Kathryn Kavanagh, Jukka Jernvall and Alistair Evans in the Institute of Biotechnology of the University of Helsinki first studied cheek tooth, or molar, development in mice. Similarly to human teeth, mouse molars develop from front-to-back so that the first molar appears first and the posterior molars bud sequentially along the jaw. Normally the last molar to develop is the third, or wisdom tooth. Experiments on cultured mouse molars revealed that the size and number of posterior molars depend on previously initiated molars.

The mechanism, called an ‘inhibitory cascade’, acts much like a ratchet that cumulatively increases size differences of teeth along the jaw. By quantifying their experiments, the researchers constructed a simple mathematical model which they then used to predict relative size and number of molars across many other mouse and rat species. They show that the model accurately predicts tooth proportions and numbers, one curious effect being that the second molar makes up one-third of total molar area, irrespective of species-specific molar proportions.

This new research demonstrates that with advances in the study of the molecular regulation of development, it is now possible to identify how development influences evolution. And this may help explain the troublesome wisdom teeth of modern humans – the blame may lie within a weak inhibitory cascade that allows the development of the last molar in a jaw that is too small.

The article Predicting evolutionary patterns of mammalian teeth from development by K. Kavanagh, J. Jernvall and A. Evans will be published in Nature September 27th.

Media Contact

Maria Peltonen alfa

More Information:

http://www.helsinki.fi

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors