Cystic fibrosis patients may breathe easier, thanks to bioengineered antimicrobials

“While not a cure, this work has potential as a therapeutic strategy against bacterial infections in cystic fibrosis,” said Gerard Wong a professor of materials science and engineering, of physics, and of bioengineering at the U. of I., and a corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted this week on the journal’s Web site.

Ordinarily, pulmonary passages are lined with a thin layer of mucus that traps bacteria and other pathogens. Moved along by the motions of countless cilia, the mucus also acts as a conveyor belt that disposes of the debris.

In patients with cystic fibrosis, however, the mucus is more like molasses – thick and viscous. Because the cilia can no longer move the mucus, the layer becomes stuck, and the bacteria grow, multiply and colonize. Long-term bacterial infections are the primary cause of death in cystic fibrosis.

Using synchrotron X-ray scattering and molecular dynamics simulations, the researchers took a closer look at the mucous mess.

Debris in the infected mucus includes negatively charged, long-chained molecules such as mucin, DNA and actin (from dead white blood cells). It turns out most of the body’s antimicrobials, such as lysozyme, are positively charged.

“We found that actin and lysozyme – two of the most common components in infected mucus – form ordered bundles of aligned molecules, which is something you don’t expect in something as messy as mucus,” said Wong, who also is a researcher at the university’s Beckman Institute. “Held together tightly by the attraction of opposite charge, these bundles basically lock up the antimicrobials so that they are unable to kill bacteria.”

The researchers then developed a computational model to mimic the biological system. “The model accurately predicted the structure of the actin-lysozyme bundles, and agreed quantitatively with the small-angle X-ray scattering experiments,” said Erik Luijten, a professor of materials science and engineering, and of physics, as well as a researcher at the Beckman Institute and the other corresponding author of the PNAS paper.

The next step was to find a way to liberate the lysozyme, or prevent it from binding in the first place. Using their model, the researchers explored the consequences of varying the positive charge on the lysozyme.

“When we reduced the charge, we found a huge effect in our model,” Luijten said. “The lysozyme would not bind to the actin. It floated around independently in the mucus.”

Then, through genetic engineering, the researchers made lysozyme with roughly half the normal charge. Experiments confirmed the simulations; the reduced charge prevented lysozyme from sticking to actin, without significantly reducing the all-important antimicrobial activity.

Although much work remains, future cystic fibrosis patients might use an inhaler to deliver genetically modified charge-reduced antimicrobials to upper airways. There, these ‘non-stick’ antimicrobials would go to work killing bacteria, and mitigate against long-term infection.

The implications of this research extend into other areas as well. In water purification, for example, one of the steps involves putting positively charged molecules in the water to grab negatively charged pollutants. The resulting aggregates settle to the bottom of holding tanks and are removed from the water supply.

“A better understanding of how oppositely charged molecules bind in aqueous environments could lead to ways of removing emerging pathogens in water purification,” Wong said.

Besides Wong and Luijten, co-authors of the paper are postdoctoral research associate and lead author Lori Sanders, lecturer Wujing Xian, graduate student Camilo Guáqueta, and undergraduate students Michael Strohman and Chuck Vrasich.

Funding was provided by the National Institutes of Health, the Cystic Fibrosis Foundation, the National Science Foundation and the U. of I. WaterCAMPWS Science and Technology Center. Portions of the work were carried out at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source.

To reach Gerard Wong, call 217-265-5254; e-mail:
gclwong@uiuc.edu
To reach Erik Luijten, call 217-244-5622; e-mail:
luijten@uiuc.edu

Media Contact

James E. Kloeppel University of Illinois

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors