Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EURYI project to understand how the brain is wired during embryogenesis

24.09.2007
One of the great questions of neurobiology, how the brain is built up during embryonic development, could be resolved by a young French scientist in an award winning project organised by the European Science Foundation (ESF) and the European Heads of Research Councils (EuroHORCS).

Sonia Garel has won one of the prestigious EURYI Awards granted annually to young scientists, to pursue her ground breaking research into mammalian forebrain development. She will tackle a number of fundamental questions relating both to the wiring of the brain during growth, and how evolution drove forward the sophisticated neural circuitry associated with mammals.

Garel will focus on two key processes involved in development of neural circuitry in the forebrains of young mammals as they grow. One of these processes concerns the formation of connections between neurons, the nerve cells of the brain. These connections are needed to process sensory information, execute motor functions, and provide the network for cognitive abilities. They are made up of nerve fibres called axons, which conduct electrical impulses between neurons. The other key process involves migration of brain cells to their correct positions after their manufacture. As Garel noted, these two processes are coordinated in the development of the mammalian brain, and yet have until now been studied separately for the sake of simplicity. Garel and her colleagues have already broken new ground by demonstrating the link between axon formation, and migration of cells, within the brain.

“While axon guidance and cell migration have been usually studied as independent processes, our group has shown for the first time that they are elegantly coordinated to ensure the formation of a major long-range connection of the mammalian brain, the thalamocortical projection,” said Garel. The thalamocortical projection is one of the significant evolutionary developments of the forebrain, comprising bundles of axonal connections linking two key centres, the thalamus, which relays external sensory information, and the cerebral cortex, the most highly developed region comprising the so-called grey matter.

The thalamocortical projections, that first appeared in reptiles, have been remodelled in rodents and in primates, and are therefore of great interest in the study of neurological evolution. This phase of accelerated changes in connections correlates with an increase in cell migration in the brain. But there was a price to pay for this sophistication in the form of disorders associated with neurological dysfunctions, which particularly afflict humans. Garel hopes that her work will also advance understanding of some of these disorders, which can arise through defects both in the network of axonal connections and in the process of cell migration.

“Understanding how neural circuits are elaborated during mammalian forebrain development is essential to gain insights into its normal functioning and to make progress in our comprehension of neurological and psychiatric disorders,” said Garel. But malfunctions in cell migration can be just as harmful. “During development, cell migration is essential to control the positioning of cells in the brain, and cell migration defects have been associated with several neuropsychiatry diseases such as epilepsy, schizophrenia or bipolar disorders,” said Garel.

Garel will conduct her research in mice, aiming to improve understanding of how cell migration and axonal circuit development fit together. “We have showed that, in mice embryos, migrating cells act as dynamic guideposts to guide growing axons towards their final target in the brain,” said Garel. “Our study thus opens a novel perspective of the role of cell migration in the formation of brain connections during normal and pathological development.”

The EURYI awards scheme, entering its fourth and final year, is designed to attract outstanding young scientists from around the world to create their own research teams at European research centres and launch potential world-leading research careers. Most awards are between €1,000,000 and €1,250,000, comparable in size to the Nobel Prize. Garel will receive her award in Helsinki, Finland on 27 September 2007 with other 19 young researchers.

Sonia Garel, 35 year-old French citizen, is an independent young investigator at Paris’ Ecole Normale Supérieur, studying forebrain regionalisation and formation of thalamocortical projections.

Dr. Garel gained her doctorate in molecular and cellular pharmacology at the University of Paris VI, which she followed by a post-doctoral stay at the University of California in San Francisco. She came back to France in 2003 and was selected for a career development award from the Human Frontier Science Program Organisation. She has been a regular contributor to journals such as Development.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/euryi/awards/2007/sonia-garel.html

Further reports about: Axon Brain Development EURYI Migration Young forebrain formation mammalian thalamocortical

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>