Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death in blood vessels may be an early target to prevent coronary disease

20.09.2007
EVGN scientist Martin Bennett, British Heart Foundation Professor of Cardiovascular Sciences at the Addenbrooke’s Hospital, Division of Cardiovascular Medicine in Cambridge (UK), identified the direct consequences of apoptosis of Vascular Smooth Muscle Cells (VSMC), the programmed cell death that occurs in atherosclerosis, which is a hallmark of vascular degeneration - leading as it often does to myocardial infarction.

In addition, the scientist highlighted the strong parallels existing between the apoptotic microenvironment in cardiovascular disease and those present in the tissues of a few degenerative diseases. In the long run, these data could provide better understanding of other untreatable human pathologies.

The sequence of reactions triggered by apoptosis was presented today, September 19th, at the Fourth Annual Meeting of the European Vascular Genomics Network (EVGN, www.evgn.org), the Network of excellence on cardiovascular disease, which is running in parallel with the 4th European Meeting on Vascular Biology and Medicine (EMVBM).

With more than 400 attendants from all over Europe and representatives from the rest of the world, among whom there are cardiologists, diabetes researchers, hematologists, thrombosis scientists, gene therapists and oncologists, the Bristol Meeting offers a stimulating environment for discussion and future planning.

... more about:
»Plaque »VSMC »apoptosis »atherosclerosis »prevent

Apoptosis, the programmed cell death that occurs when a cell has accumulated sufficient DNA damages that it is unable to repair its DNA, is centrally involved in the pathogenesis of a whole range of human illnesses and injury states, and atherosclerosis is no exception. However, until recently, its exact role in this pathology was unclear.

Martin Bennett, a leading cardiologist and atherosclerosis expert, set up a series of targeted experiments aimed at understanding the precise mechanism of action of this, otherwise useful, process.

“We decided – explained Bennett – to elucidate the role that VSMCs death has in the timeline of atherosclerosis progression. Using a mouse model that reproduces the human condition, we induced apoptosis of VSMCs only inside the vessel wall, observing, at first, a clear enlargement of the atherosclerotic plaques that almost doubled their size. This is a bad prognostic factor, as the more they grow the more the plaques become brittle”. That was exactly the second observation made: after the initial growth, the fibrous cap that encloses a typical plaque became thinner, whereas the plaque core increased. “All these signals – points out Bennett – could be useful at the bedside, for a real-time monitoring of atherosclerosis progression”. Not enough, after these first events, the researchers confirmed that the whole region involved in the apoptotic process undergoes calcification. This, in turn, prevents the remodelling of a vessel and, when occurs in a patient, it worsens his or her prognosis.

Furthermore, from Bennett’s investigation emerged striking analogies with two degenerative diseases: Marfan’s syndrome and Hutchinson Gilford Progeria. In both these diseases the tissues look much similar to the one analysed by Bennett in the atherosclerotic settings, with areas of calcifications, and the same kind of infiltrating cells.

“Early as they are, these data rise hope that apoptosis could be targeted at different levels, in order to prevent the cascade of reactions so noxious for the health. And that, possibly, it will help to find novel therapies also for other ailments”.

Francesca Noceti | alfa
Further information:
http://www.evgn.org/
http://www.ifom-ieo-campus.it

Further reports about: Plaque VSMC apoptosis atherosclerosis prevent

More articles from Life Sciences:

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht SERSitive: New substrates make it possible to routinely detect one molecule in a million
10.08.2018 | Institute of Physical Chemistry of the Polish Academy of Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

Im Focus: Touring IPP’s fusion devices per virtual-reality viewer

ASDEX Upgrade and Wendelstein 7-X – as if you were there / 360° view of fusion research

You seem to be standing in the plasma vessel looking around: Where otherwise plasmas with temperatures of several million degrees are being investigated, with...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Ph.D. student develops spinning heat shield for future spacecraft

10.08.2018 | Physics and Astronomy

Investigating global air pollution

10.08.2018 | Life Sciences

The “TRiC” to folding actin

10.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>