Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The importance of gene regulation for common human disease

17.09.2007
A new study published in Nature Genetics on Sunday 16 September 2007 show that common, complex diseases are more likely to be due to genetic variation in regions that control activity of genes, rather than in the regions that specify the protein code.

This surprising result comes from a study at the Wellcome Trust Sanger Institute of the activity of almost 14,000 genes in 270 DNA samples collected for the HapMap Project. The authors looked at 2.2 million DNA sequence variants (SNPs) to determine which affected gene activity.

They found that activity of more than 1300 genes was affected by DNA sequence changes in regions predicted to be involved in regulating gene activity, which often lie close to, but outside, the protein-coding regions.

"We predict that variants in regulatory regions make a greater contribution to complex disease than do variants that affect protein sequence," explained Dr Manolis Dermitzakis, senior author from the Wellcome Trust Sanger Institute. "This is the first study on this scale and these results are confirming our intuition about the nature of natural variation in complex traits.

... more about:
»Complex »DNA »HapMap »Variation »regulatory

"One of the challenges of large-scale studies that link a DNA variant to a disease is to determine how the variant causes the disease: our analysis will help to develop that understanding, a vital step on the path from genetics to improvements in healthcare."

Past studies of rare, monogenic disease, such as cystic fibrosis and sickle-cell anaemia, have focused on changes to the protein-coding regions of genes because they have been visible to the tools of human genetics. With the HapMap and large-scale research methods, researchers can inspect the role of regions that regulate activity of many thousands of genes.

The HapMap Project established cell cultures from participants from four populations as well as, for some samples, information from families, which can help to understand inheritance of genetic variation. The team used these resources to study gene activity in the cell cultures and tie that to DNA sequence variation

‘We have generated an information resource readily available to investigators working in the mapping of variants underlying complex traits. Regions of association can be correlated with signatures of regulatory regions affecting gene expression' explained Dr Panos Deloukas, Senior Investigator at the Wellcome Trust Sanger Institute

"We found strong evidence that SNP variation close to genes - where most regulatory regions lie - could have a dramatic effect on gene activity," said Dr Barbara Stranger, postdoctoral fellow at WT Sanger Institute. "Although many effects were shared among all four HapMap populations, we have also shown that a significant number were restricted to one population."

They also showed that genes required for the basic functions of the cell - so-called housekeeping genes - were less likely to be subject to genetic variation. "This was exactly as we would expect: you can't mess too much with the fundamental life processes and we predicted we would find reduced effects on these genes," said Dr Dermitzakis.

The study also detected SNP variants that affect the activity of genes located a great distance away. Genetic regulation in the human genome is complex and highly variable: a tool to detect such distant effects will expand the search for causative variants. The authors note, however, that the small sample size of 270 HapMap individuals is sensitive enough to detect only the strongest effects.

The results of this study are becoming available in public databases such as Ensembl for researchers to use.

The paper is accompanied by two others examining effects of changes to regulatory DNA in samples from asthma and from heart study patients.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk
http://www.wellcome.ac.uk/

Further reports about: Complex DNA HapMap Variation regulatory

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>