Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the mechanisms of voltage sensing and transduction in biological processes

17.09.2007
The voltage sensor of voltage-gated ion channels is a conserved protein domain that senses millivolt changes in transmembrane potential, to regulate ion permeation through the channel. A recently discovered protein, Ci-VSP, has a voltage sensor that is coupled not to an ion channel but to a phosphatidylinositide phosphosphatase, the activity of which depends on membrane potential.

In a new paper published in The Journal of Physiology, Murata and Okamura, from the Okazaki Institute for Integrative Bioscience, examine a voltage-sensitive phosphatase that converts an electrical to a chemical signal; they directly demonstrate that the enzyme activity of Ci-VSP changes in a voltage-dependent manner through the operation of the voltage sensor.

Prior to this work, it was unclear which phosphoinositides were the major substrates of the phosphatase activity, and whether depolarisation or hyperpolarisation induced the phosphatase activity. By expressing phosphoinositide-specific sensors in Xenopus oocytes and applying both electrophysiology and imaging of phosphoinositides, it was shown that enzyme activity is activated upon depolarisation (not upon hyperpolarisation), and that levels of both PtdIns(4,5)P2 and PtsIns(3,4,5)P3 are regulated by the operation of voltage sensor.

“Our findings identify common principles of the voltage sensor shared between voltage-gated ion channels and the voltage-sensing phosphatase," comment the authors. "There is no question that the VSP is a much simpler model than ion channels for understanding the mechanisms of voltage sensing, and understanding the VSP will provide insights into the function of ion channels as well.

Such knowledge is critical for understanding general mechanisms of voltage sensing and many disorders coupled with altered membrane excitabilities. The VSP’s ability to tune phosphoinositide phosphatase activity by voltage will also serve as an important molecular tool to understand mechanisms of tumor suppressor phosphatase, PTEN, and other phosphatases that underlie carcinogenesis and metabolic disorders."

Melanie Thomson | alfa
Further information:
http://www.physoc.org
http://www.blackwellpublishing.com

Further reports about: Ion Phosphatase mechanisms phosphoinositide sensing

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>