Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic stem cells used to grow cartilage

10.09.2007
Rice method is first to yield cartilage-like cells, engineer human cartilage

Rice University biomedical engineers have developed a new technique for growing cartilage from human embryonic stem cells, a method that could be used to grow replacement cartilage for the surgical repair of knee, jaw, hip, and other joints.

"Because native cartilage is unable to heal itself, researchers have long looked for ways to grow replacement cartilage in the lab that could be used to surgically repair injuries," said lead researcher Kyriacos A. Athanasiou, the Karl F. Hasselmann Professor of Bioengineering. "This research offers a novel approach for producing cartilage-like cells from embryonic stem cells, and it also presents the first method to use such cells to engineer cartilage tissue with significant functional properties."

The results are available online and slated to appear in the September issue of the journal Stem Cells. The study involved cells from an NIH-sanctioned stem cell line.

Using a series of stimuli, the researchers developed a method of converting the stem cells into cartilage cells. Building upon this work, the researchers then developed a process for using the cartilage cells to make cartilage tissue. The results show that cartilages can be generated that mimic the different types of cartilage found in the human body, such as hyaline articular cartilage -- the type of cartilage found in all joints -- and fibrocartilage -- a type found in the knee meniscus and the jaw joint. Athanasiou said the results are exciting, as they suggest that similar methods may be used to convert the stem cell-derived cartilage cells into robust cartilage sections that can be of clinical usefulness.

Tissue engineers, like those in Athanasiou's research group, are attempting to unlock the secrets of the human body's regenerative system to find new ways of growing replacement tissues like muscle, skin, bone and cartilage. Athanasiou's Musculoskeletal Bioengineering Laboratory at Rice University specializes in growing cartilage tissues.

The idea behind using stem cells for tissue engineering is that these primordial cells have the ability to become more than one type of cell. In all people, there are many types of "adult" stem cells at work. Adult stem cells can replace the blood, bone, skin and other tissues in the body. Stem cells become specific cells based upon a complex series of chemical and biomechanical cues, signals that scientists are just now starting to understand.

Unlike adult stem cells, which can become only a limited number of cell types, embryonic stem cells can theoretically become any type of cell in the human body.

Athanasiou's group has been one of the most successful in the world at studying cartilage cells and, especially, engineering cartilage tissues. He said that for his research the primary advantage that embryonic stem cells have over adult stem cells is their ability to remain malleable.

"Identifying a readily available cell source has been a major obstacle in cartilage engineering," Athanasiou said. "We know how to convert adult stem cells into cartilage-like cells. The more problematic issue comes in trying to maintain a ready stock of adult stem cells to work with. These cells have a strong tendency to convert from stem cells into a more specific type of cell, so the clock is always ticking when we work with them."

By contrast, Athanasiou said his research group has found it easier to grow and maintain a stock of embryonic stem cells. Nonetheless, he is quick to point out that there is no clear choice about which type of stem cell works best for cartilage engineering.

"We don't know the answer to that," Athanasiou said. "It's extremely important that we study all potential cell candidates, and then compare and contrast those studies to find out which works best and under what conditions. Keep in mind that these processes are very complicated, so it may well be that different types of cells work best in different situations."

Athanasiou began studying embryonic stem cells in 2005. Since funding for the program was limited, he asked two new graduate students in his group if they were interested in pursuing the work as a secondary project to their primary research. Those students, Eugene Koay and Gwen Hoben, are co-authors of the newly published study. Both are enrolled in the Baylor College of Medicine Medical Scientist Training Program, a joint program that allows students to concurrently earn their medical degree from Baylor while undertaking Ph.D. studies at Rice.

"Eugene and Gwen are both outstanding students," Athanasiou said. "Each earned their undergraduate degree from Rice and each worked in my laboratory as undergraduate students. They have chosen to do this research because they think this may represent the future of regenerative medicine."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Athanasiou Embryonic Engineering Joint cartilage embryonic stem cells engineer method stem cells

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>