Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ‘Knock-Out’ Gene Model Provides Molecular Clues to Breast Cancer

07.09.2007
New insights into the role of estrogen receptor in mammary gland development may help scientists better understand the molecular origin of breast cancer, according to new research from the University of Cincinnati (UC).

About a decade ago, U.S. scientists at the National Institutes of Health (NIH) developed a standard estrogen receptor (ER) gene knock-out mouse model to study the estrogen receptor’s role in human diseases.

“Unfortunately, because these mice lacked mammary glands as a consequence of genetic manipulation, using this model to study the relationship between the estrogen receptor and breast cancer proved ineffective,” explains Sohaib Khan, PhD, professor of cell and cancer biology at UC.

“Knocking out the estrogen receptor gene for the entire genome, as the NIH scientists did, doesn’t just affect the function of the receptor in all estrogen-responsive organs. It also creates an imbalance in the body’s circulating sex hormone levels, which could affect other physiological functions,” Khan adds. “An alternative model was clearly needed to study the intricacies of estrogen receptors involvement in this disease.”

... more about:
»Development »Estrogen »Tissue »breast »gland »mammary »receptor

Estrogen receptor is a cellular protein that binds with the hormone estrogen and facilitates action in different parts of the body, including the mammary gland. Research has shown that about 70 percent of breast cancer patients have estrogen receptor-positive breast cancer, meaning their tumors will have some beneficial response to anti-estrogen drugs like tamoxifen (ta-MOX’-ee-fen, marketed as Nolvodex).

After two years of work, Khan says his team has developed a knock-out mouse model that will allow scientists to study the role of estrogen receptor in specific organs (for example, mammary glands) without affecting estrogen-signaling throughout the rest of its body.

Khan used what is called a “conditional knock-out technique” to develop a new mouse model that retains estrogen receptor in all tissues except mammary tissue, allowing scientists to study the receptor’s role in breast development and breast cancer.

Using this model, Khan’s team found that knocking out the gene only in mammary tissue resulted in abnormalities that compromised milk production in the nursing female. This suggests that estrogen expression is essential for normal duct development during puberty, pregnancy and lactation.

Khan and his coworkers report the creation of this model and its potential implications in an early online edition of the Proceedings of the National Academy of Sciences on Sept. 4, 2007, followed by the print issue Sept. 11, 2007. The study directly refutes previous research, which suggests that estrogen receptor in epithelial cells was not essential to normal mammary gland development.

Mammary tissue is made up of two cell types—stromal cells, which give the tissue structure, and epithelial cells, which make up the lining of the mammary gland and become cancerous in the majority of breast cancers.

Unlike other organs in the body, the mammary glands develop after birth in response to increases in circulating hormones. This triggers growth of a network of branched ducts throughout the breast tissue that do not change again until a woman becomes pregnant.

“Even though the relationship between the estrogen receptor and breast cancer is well established, we still know very little about the receptor’s mechanism of action,” explains Khan, corresponding author of the study. “Unless we study those mechanisms more closely, improved strategies for breast cancer treatments will not be possible.”

Premenopausal women with breast cancer are currently given five years of tamoxifen, a drug that blocks the estrogen receptor action in cancer cells, to prevent recurrence. Studies have shown that the drug reduces recurrence in 40 percent of the women who take it, but Khan says many women eventually develop resistance to the drug.

Using this unique mouse model, UC researchers are currently collaborating with scientists at Dana Farber Cancer Institute/Harvard Medical School to understand the relationship between estrogen-signaling and oncogene-mediated breast cancer development. Future findings from these studies could help scientists better understand the molecular origin of breast cancer and develop new drugs to more effectively treat it.

This study was funded by grants from the National Institutes of Health, U.S. Department of Defense and the UC pilot cancer grant program. Collaborators include Kay-Uwe Wagner, PhD, of the University of Nebraska, and UC colleagues Yuxin Feng and David Manka, PhD.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

Further reports about: Development Estrogen Tissue breast gland mammary receptor

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>