Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

XXL Cages - Organometallic lattice with unusually large pores can house gases and ferrocene molecules

07.09.2007
It’s full of holes and yet it holds together: Whether as a place to store gas molecules; for the separation of substances; as sensors, catalysts, and nanoreactors; or materials for optoelectronics, porous crystalline solids with a regular array of defined pores have become indispensable in science and technology.

Organometallic compounds can also form porous structures and have greatly broadened the palette of porous materials, though until now these have been limited to species with very small pores. In the journal Angewandte Chemie, Korean researchers led by Jaheon Kim now report the synthesis and characterization of a mesoporous organometallic lattice with cagelike pores that are 3.9 to 4.7 nm in diameter.

Previously, only a few stable structures made of metal atoms or ions and organic ligands have been made that have larger pores, called mesopores (>3 nm in diameter). Among the reasons for this is the special type of bonding that takes place between a metal and a ligand, known as complex coordination. Large cavities can easily destabilize this type of lattice. Just as difficult as the synthesis of such structures is their characterization at the atomic level. The Korean researchers have overcome both challenges. Their lattice structures are made of ions of the rare-earth metal terbium and an organic ligand. By using X-ray crystallographic methods, the scientists were also able to precisely determine the structures of both the crystal and the pores.

The use of nitrogen adsorption measurements also allowed them to confirm that there are two types of pore in the structure, some a little bigger, some smaller. When the samples are activated at 160 °C, the specific surface area of the porous crystals increases further, but its sorption ratio does not change. This behavior is also confirmed in adsorption experiments with carbon dioxide.

... more about:
»ferrocene »lattice »optoelectronic »porous

When irradiated with light, the crystals fluoresce green. They are very thermally stable and hold out well enough in a vacuum to be loaded up by means of a sublimation process with guest molecules that are catalytically active or useful for optoelectronics. The researchers tested this with ferrocene, a molecular “sandwich” with two aromatic five-membered rings acting as the “bread” and an iron atom as the “filling”. With ferrocene guests in its pores, the crystal no longer fluoresces green. Instead, emission from the ferrocene is observed. The researchers believe that the crystal lattice absorbs the photons like an antenna and passes them on to the ferrocene unit in the form of “energy bundles”. The ferrocene molecule in turn gives off this energy in the form of light. However, its emission is stronger than that given off in the irradiation of ferrocene alone. Systems using this construction principle could be useful for future optoelectronic components such as novel light-emitting diodes.

Author: Jaheon Kim, Soongsil University, Seoul (Korea), mailto:jaheon@ssu.ac.kr

Title: Crystal Structure and Guest Uptake of a Mesoporous Metal-Organic Framework Containing Cages of 3.9 and 4.7nm in Diameter

Angewandte Chemie International Edition, doi: 10.1002/anie.200702324

Jaheon Kim | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: ferrocene lattice optoelectronic porous

More articles from Life Sciences:

nachricht Cohesin down-regulation drives hematopoietic stem cell aging
14.12.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Foxes in the city: citizen science helps researchers to study urban wildlife

14.12.2018 | Ecology, The Environment and Conservation

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>