Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details regulation of vital tumor suppressor gene p53

07.09.2007
Related modifications at single DNA site seen to have contradictory effects

So vital is the p53 tumor suppressor gene in controlling cancer that its dysfunction is linked to more than half of human cancers. At the same time, the gene’s capacity for shutting down cell growth, even causing cells to commit suicide if necessary, is so absolute that it must be tightly regulated to maintain the optimal balance between protecting against cancer and permitting normal growth.

Now, a study by scientists at The Wistar Institute reveals new levels of subtlety in the body’s management of this all-important tumor suppressor gene and the protein it produces. The experiments show that, while the addition of a specific molecule at a particular site on the p53 protein prevents it from acting, the addition of a second copy of the same molecule at the same site reverses the effect, sending p53 into action. Further, removal of the second copy returns the protein to its repressed state.

In addition to the implications for understanding the activity of the p53 gene, the findings also outline an important new cycle of gene-regulating modifications involving the addition and removal of the molecules, called methyl groups, that may be widespread in the genome. A report on the study appears in the September 6 issue of Nature.

... more about:
»DNA »addition »methyl »p53 »suppressor

“The p53 tumor suppressor is extremely potent in halting cell growth,” says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor at The Wistar Institute and senior author on the study. “So, as critical as p53 is in protecting against the unchecked growth of cancer, you don’t want it constantly on. If it were always on, your cells wouldn’t be able to grow normally. Yet it needs to be constantly on call for activation against cancer and other aberrant cellular developments. Our study shows one way that the cell, working at one particular location on the p53 protein, maintains a nuanced but firm control over the gene’s activity.”

Responsible for tumor suppression throughout the body, the p53 gene is mutated or otherwise disabled in a majority of human cancers. When working properly, the protein produced by the p53 gene acts by binding to DNA to activate other genes that direct cells with damaged DNA to cease dividing until the damage can be repaired. Cells with such damage include cancer cells, since all cancers track to genetic flaws of one kind or another, whether inherited or acquired. If repairs cannot be made, p53 commands the cells with damaged DNA to self-destruct so they are no longer a danger to the body.

This powerful ability of p53 to shut down cell division and induce cell death points to why fine-tuned regulatory mechanisms such as the one outlined in the new study are crucial for cellular survival.

In a previous study published in Nature in November 2006, Berger and her colleagues showed that the addition of a single methyl group – a tiny molecule consisting of one carbon and three hydrogen atoms – at a specific site on the p53 protein was sufficient to repress its activity. In the current study, the researchers found that the addition of a second methyl group at the same site reversed the effect. With the pair of methyl groups in place, the site is able to attract and bind a molecule called 53bp1, itself required for the p53 protein to bind to DNA to launch the genes responsible for carrying out its tumor-suppressing mission. With one methyl group in place, the site is said to be monomethylated; with two in place, it is dimethylated.

“An important finding from our study is that the dimethylation mark is the required recognition site for 53bp1 on the p53 protein,” says Jing Huang, Ph.D., lead author on the Nature study. “If you remove that mark, 53bp1 cannot associate with the p53 protein, and p53’s activity will be reduced.”

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: DNA addition methyl p53 suppressor

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>