Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study details regulation of vital tumor suppressor gene p53

07.09.2007
Related modifications at single DNA site seen to have contradictory effects

So vital is the p53 tumor suppressor gene in controlling cancer that its dysfunction is linked to more than half of human cancers. At the same time, the gene’s capacity for shutting down cell growth, even causing cells to commit suicide if necessary, is so absolute that it must be tightly regulated to maintain the optimal balance between protecting against cancer and permitting normal growth.

Now, a study by scientists at The Wistar Institute reveals new levels of subtlety in the body’s management of this all-important tumor suppressor gene and the protein it produces. The experiments show that, while the addition of a specific molecule at a particular site on the p53 protein prevents it from acting, the addition of a second copy of the same molecule at the same site reverses the effect, sending p53 into action. Further, removal of the second copy returns the protein to its repressed state.

In addition to the implications for understanding the activity of the p53 gene, the findings also outline an important new cycle of gene-regulating modifications involving the addition and removal of the molecules, called methyl groups, that may be widespread in the genome. A report on the study appears in the September 6 issue of Nature.

... more about:
»DNA »addition »methyl »p53 »suppressor

“The p53 tumor suppressor is extremely potent in halting cell growth,” says Shelley L. Berger, Ph.D., the Hilary Koprowski Professor at The Wistar Institute and senior author on the study. “So, as critical as p53 is in protecting against the unchecked growth of cancer, you don’t want it constantly on. If it were always on, your cells wouldn’t be able to grow normally. Yet it needs to be constantly on call for activation against cancer and other aberrant cellular developments. Our study shows one way that the cell, working at one particular location on the p53 protein, maintains a nuanced but firm control over the gene’s activity.”

Responsible for tumor suppression throughout the body, the p53 gene is mutated or otherwise disabled in a majority of human cancers. When working properly, the protein produced by the p53 gene acts by binding to DNA to activate other genes that direct cells with damaged DNA to cease dividing until the damage can be repaired. Cells with such damage include cancer cells, since all cancers track to genetic flaws of one kind or another, whether inherited or acquired. If repairs cannot be made, p53 commands the cells with damaged DNA to self-destruct so they are no longer a danger to the body.

This powerful ability of p53 to shut down cell division and induce cell death points to why fine-tuned regulatory mechanisms such as the one outlined in the new study are crucial for cellular survival.

In a previous study published in Nature in November 2006, Berger and her colleagues showed that the addition of a single methyl group – a tiny molecule consisting of one carbon and three hydrogen atoms – at a specific site on the p53 protein was sufficient to repress its activity. In the current study, the researchers found that the addition of a second methyl group at the same site reversed the effect. With the pair of methyl groups in place, the site is able to attract and bind a molecule called 53bp1, itself required for the p53 protein to bind to DNA to launch the genes responsible for carrying out its tumor-suppressing mission. With one methyl group in place, the site is said to be monomethylated; with two in place, it is dimethylated.

“An important finding from our study is that the dimethylation mark is the required recognition site for 53bp1 on the p53 protein,” says Jing Huang, Ph.D., lead author on the Nature study. “If you remove that mark, 53bp1 cannot associate with the p53 protein, and p53’s activity will be reduced.”

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.org

Further reports about: DNA addition methyl p53 suppressor

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>