Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify a role for glucose-sensing neurons in type 2 diabetes

30.08.2007
In cases of Type 2 diabetes, the body’s cells fail to appropriately regulate blood glucose levels. Research has suggested that this results from two simultaneous problems: the improper functioning of pancreatic beta cells and the impairment of insulin’s actions on target tissues, including the liver, fat and muscles.

But now, research led by scientists at Beth Israel Deaconess Medical Center (BIDMC) and Oregon Health & Science University has identified a third abnormality that could play an important role in the development of obesity-induced Type 2 diabetes. Reported in the journal Nature, which appears in its Advance Online format today, the study describes a previously unrecognized role for glucose-sensing neurons in the onset of the disease – in other words, an important component of Type 2 diabetes may indeed be “in your head.”

“For many years we’ve known that subpopulations of neurons in the brain become ‘excited’ by glucose,” explains Bradford Lowell, MD, PhD, an investigator in the Division of Endocrinology, Diabetes and Metabolism at BIDMC and Professor of Medicine at Harvard Medical School (HMS). “But we haven’t understood exactly how or why this is significant. With this study, we show that these neurons sense increases in glucose and then initiate responses aimed at returning blood-glucose levels to normal. This is the first demonstration that glucose-sensing by neurons plays an important role in responding to rising blood glucose levels.” This finding, adds Lowell, who served as the study’s co-senior author together with Michael Cowley, PhD, of the Division of Neuroscience, Oregon Health & Science University, could potentially lead to novel treatments for Type 2 diabetes.

Knowing that the pro-opiomelanocortin (POMC) neurons regulate body weight in both mice and humans, co-lead authors Laura Parton, PhD, Chian Ping Ye, PhD, Roberto Coppari, PhD, and Pablo Enriori, PhD, decided to study the electrical properties of these cells in an animal model.

... more about:
»Diabetes »POMC »PhD »glucose-sensing »levels »type

“New advances in genetic techniques have allowed us to express green fluorescent proteins [GFP] specifically in one cell type,” explains Parton, a member of the Lowell laboratory at BIDMC and Postdoctoral Research Fellow at HMS. “The advantage of expressing a fluorescent marker specifically in one type of neuron is the ability to identify and distinguish these cells from the many hundreds of other cell types that are present in the brain.”

As predicted, the electrophysiology experiments demonstrated that POMC neurons became electrically excited by a rise in glucose, similar to what would occur after eating a meal. The authors then went on to disrupt glucose-sensing abilities specifically in the POMC neurons – and confirmed that these neurons play a critically important role in regulating blood-glucose levels in mice. And, as is the case in pancreatic beta cells, the glucose-sensing ability of POMC neurons was shown to be defective in the mice with obesity-induced Type 2 diabetes.

“What is apparently happening,” says Parton, “is that an increase in the activity of the mitochondrial uncoupling protein 2 (UCP2), is behind the loss of glucose-sensing ability in the POMC neurons. Increased activity of UCP2 is known to cause loss of glucose-sensing and defective insulin secretion by pancreatic beta cells and this study now shows that a similar phenomenon also occurs in neurons.”

“These new findings add to our understanding of Type 2 diabetes at a critically important time,” adds Lowell. “The incidence of the disease has risen to epidemic proportions, and obesity is a big risk factor for the disease. The discovery that defects in glucose-sensing by the brain may also be contributing to Type 2 diabetes could help lead to new therapeutic strategies for this widespread problem.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.harvard.edu
http://www.bidmc.harvard.edu

Further reports about: Diabetes POMC PhD glucose-sensing levels type

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>