Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies prefer fizzy drinks

30.08.2007
Taste cells found specific to carbonation, UC Berkeley neuroscientists report

While you may not catch a fly sipping Perrier, the insect has specialized taste cells for carbonated water that probably encourage it to binge on food with growing microorganisms. Yeast and bacteria both produce carbon dioxide (CO2) when they feast, and CO2 dissolves readily in water to produce seltzer or soda water.

This is one of the first, if not the only taste sensation discovered in animals beyond the five that humans taste - sweet, sour, bitter, salty and umami, or savory.

"This was unexpected, because fruit flies also smell CO2 and they avoid it," said neurobiologist Kristin Scott, assistant professor of molecular and cell biology at UC Berkeley. "One way that we like to think of it is that flies seek the right amount of rottenness - if fruit is only half rotten, producing a little CO2, it's good; if too rotten, it gives off a lot of CO2 and is bad tasting. They seek a balance."

... more about:
»CO2 »Carbon »carbonation »five »fly »receptor »yeast

Scott and her UC Berkeley colleagues, graduate students Walter Fischler, technician Priscilla Kong and postdoctoral fellow Sunanda Marella - all in the Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute - report their discovery in the Aug. 30 issue of Nature.

Mammals have five known types of taste receptors, though there may be more to discover, Scott said. Flies may have five distinct receptors also, but not the same ones mammals have. While Scott has shown that fruit flies can detect sweet and bitter compounds, and now carbonation, she has discounted their ability to taste umami and said that their ability to taste sour compounds is questionable. She and her lab continue to investigate other unknown taste modalities in fruit flies, which could be any of a number of tastes, such as salt or alcohol.

The discovery came when Fischler, frustrated that he could not find a chemical that stimulated an unknown type of fruit fly taste cell he had isolated, tested the cells' reaction to a drop of Samuel Adams beer. Surprised by a positive response, he tried to narrow down the taste preference to one of the many chemicals in beer. Flat beer and dry yeast, for example, did not work. That's when he discovered the leftover bottle of Calistoga mineral water.

As he was searching for beer components to test, he said, "I opened the refrigerator and looked in, when a light bulb went on. Calistoga would be a great way of testing CO2."

The rest is history. Dry ice - frozen CO2 - produced a strong response, while high levels of gaseous CO2 produced a weak response in the taste cells. Sodium bicarbonate in a basic solution that does not contain CO2 bubbles did not work; bicarbonate in a solution with CO2 bubbles did. The liquid in which yeast grow, though not the yeast themselves, also elicited a response from the taste cell. These and a few other genetic tests narrowed the taste trigger down to dissolved carbon dioxide.

The preference for carbonation is weak compared with that for sweetness, Scott noted, implying that seltzer enhances taste or makes other tastes more acceptable. This makes sense because CO2 has no nutritional value, but is a byproduct of organisms - yeast and bacteria - that do provide nutrients, she said.

The newly discovered taste sensors for carbonation reside on their own structures, called taste pegs, on the tongue of the fly. While a fruit fly's four other taste cells are perched on the tip of bristles that cover the entire body, the carbonated water taste cells are clustered around the margins of the sponge-like tip of the proboscis, at the base of taste bristles.

Scott investigates taste cells, which are a type of nerve cell, and is characterizing the cells and genes associated with different tastes. So far, she and her laboratory colleagues have identified the sweet and bitter cells and some of the gustatory receptor genes that detect sweet and bitter compounds in fruit flies.

Fischler now is trying to isolate the actual receptor in the CO2-sensing nerve cell that grabs the CO2 molecule and sends a signal to the fly brain that there is carbonation in the food. It will then be possible to see if others, including humans, also have carbonation receptors on taste cells.

"There may be many more taste modalities in humans" than the five known today, said Scott. Even if CO2 is a taste unique to fruit flies, it's discovery suggests that other animals may have taste receptors tuned to important chemicals in their environment, she said, either to avoid them, as is the case with bitter chemicals, or seek them out, as is the case with sugars and CO2.

"Thus, taste modalities may differ according to nutritional needs," she and her colleagues wrote. "Alternatively, CO2 may be an unappreciated taste modality in many organisms."

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: CO2 Carbon carbonation five fly receptor yeast

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>