Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer weapon: nuclear nanocapsules

28.08.2007
Nanotubes packing powerful alpha-emitters could target lone cancer cells

Rice University chemists have found a way to package some of nature's most powerful radioactive particles inside DNA-sized tubes of pure carbon -- a method they hope to use to target tiny tumors and even lone leukemia cells.

"There are no FDA-approved cancer therapies that employ alpha-particle radiation," said lead researcher Lon Wilson, professor of chemistry. "Approved therapies that use beta particles are not well-suited for treating cancer at the single-cell level because it takes thousands of beta particles to kill a lone cell. By contrast, cancer cells can be destroyed with just one direct hit from an alpha particle on a cell nucleus."

The study's results are available online and slated to appear in an upcoming issue of the journal Small.

... more about:
»Alpha »Radiation »Radioactive »Wilson »beta »decay

In the study, Wilson, Rice graduate student Keith Hartman, University of Washington (UW) radiation oncologist Scott Wilbur and UW research scientist Donald Hamlin, developed and tested a process to load astatine atoms inside short sections of carbon nanotubes. Because astatine is the rarest naturally occurring element on Earth -- with less than a teaspoon estimated to exist in the Earth's crust at any given time -- the research was conducted using astatine created in a UW cyclotron.

Astatine, like radium and uranium, emits alpha particles via radioactive decay. Alpha particles, which contain two protons and two neutrons, are the most massive particles emitted as radiation. They are about 4,000 times more massive than the electrons emitted by beta decay -- the type of radiation most commonly used to treat cancer.

"It's something like the difference between a cannon shell and a BB," Wilson said. "The extra mass increases the amount of damage alpha particles can inflict on cancer cells."

The speed of radioactive particles is also an important factor in medical use. Beta particles travel very fast. This, combined with their small size, gives them significant penetrating power. In cancer treatment, for example, beams of beta particles can be created outside the patient's body and directed at tumors. Alpha particles move much more slowly, and because they are also massive, they have very little penetrating power. They can be stopped by something as flimsy as tissue paper.

"The unique combination of low penetrating power and large particle mass make alpha particle ideal for targeting cancer at the single-cell level," Wilson said. "The difficulty in developing ways to use them to treat cancer has come in finding ways to deliver them quickly and directly to the cancer site."

In prior work, Wilson and colleagues developed techniques to attach antibodies to carbon fullerenes like nanotubes. Antibodies are proteins produced by white blood cells. Each antibody is designed to recognize and bind only with a specific antigen, and doctors have identified a host of cancer-specific antibodies that can be used to kill cancer cells.

In follow-up research, Wilson hopes to test the single-celled cancer targeting approach by attaching cancer-specific antibodies to astatine-loaded nanotubes.

One complicating factor in any astatine-based cancer therapy will be the element's short, 7.5-hour half-life. In radioactive decay, the term half-life refers to the time required for any quantity of a substance to decay by half its initial mass. Due to astatine's brief half-life, any treatment must be delivered in a timely way, before the particles lose their potency.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Alpha Radiation Radioactive Wilson beta decay

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>