Bacteria Genome Research Could Save Orchards and Assist Blood Transfusions

The researchers were interested in how the bacteria naturally produced a family of chemicals called desferrioxamines. Desferrioxamine E is produced by the bacterium Erwinia amylovora. The bacterium uses it to damage apple or pear trees and acquire iron from them. This allows it to establish an infection that leads to the economically-damaging agricultural disease known as “Fire Blight” that can sweep through an orchard if the infected trees are not removed. The bacterium Streptomyces coelicolor produces desferrioxamine B, which is used to treat iron overload in humans – for instance following extensive blood transfusions.

By studying the genomes of the two bacteria, the researchers were able to work out that each uses a similar biochemical pathway to produce desferrioxamines. In both cases they use a “remarkable” trimerisation-macrocyclisation reaction cascade in the key step. The researchers purified the enzyme responsible and showed that it could catalyse the reaction cascade in a test tube.

The current industrial process to create desferrioxamine B relies on the fermentation of the bacterium Streptomyces pilosus. The Warwick-led research has identified how Streptomyces bacteria create it using only four enzyme catalysts and four different building blocks. In contrast, the laboratory synthesis of desferrioxamine B requires 10 steps and uses numerous chemicals. Harnessing the enzymes may result in much cheaper pharmaceuticals based on desferrioxamine B and manipulating them could lead to the creation of new orally-active analogues of this important pharmaceutical.

The new understanding of how desferrioxamine E is created by Erwinia amylovora opens the way for the creation of new chemical inhibitors that may prevent this bacterium from inflicting Fire Blight on orchards

The research was led by Professor Greg Challis from the University of Warwick and involved colleagues from the University of Warwick and the Universidad Nacional Autonoma de Mexico. It was published online in Nature Chemical Biology on Sunday 19th of August.

Media Contact

Richard Fern alfa

More Information:

http://www.warwick.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors