Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein 'chatter' linked to cancer activation

14.08.2007
Scientists have found the existence of cross-talk between human chromosome ends and the protein complexes central to the stability of the entire human genome, a “chat” that contributes to cancer development.

The research, published today in Nature Structural & Molecular Biology, sheds new light on the pathology of three related but non-curable cancer-predisposed human disorders: ataxia telangiectasia, ataxia telangiectasia-like disorder, and Nijmegen breakage syndrome.

“The proteins whose deficiency is responsible for these three human disorders have the job of ensuring that chromosome ends are maintained and protected,” says Xu-Dong Zhu, assistant professor of biology and the lead author on the study. “As we age, our chromosome ends become shorter. Individuals whose ends deteriorate faster are at a higher risk of developing cancer because short chromosome ends are a serious threat to the stability of our genome. When the genome becomes unstable, it puts our bodies at greater risk of cancer.”

Zhu adds that patients with ataxia telangiectasia, ataxia telangiectasia-like disorder, and Nijmegen breakage syndrome experience an accelerated rate of loss of DNA from chromosome ends. “We didn’t know why this happens; now we have found that the communication link between these proteins and a protein crucial for maintenance of chromosome ends is either missing or nonfunctional in these patients.”

... more about:
»Ataxia »Cells »Chromosome

Zhu further explains that lack of this cross talk in normal cells promotes short chromosome ends and as a result promotes cancer formation. A key difference between cancer cells and normal cells is that the former maintain their chromosome ends and have the unlimited potential to grow. Disruption of this communication in cancer cells induces shortening of chromosome ends and may restrict their potential to grow.

Zhu says that the discovery will help researchers understand the onset and progression of these diseases as well as help them find a cure for cancer.

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: Ataxia Cells Chromosome

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>