Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interaction of just 2 genes governs coloration patterns in mice

14.08.2007
Finding in ubiquitous rodents may apply much more broadly to other mammalian species

Biologists at Harvard University and the University of California, San Diego, have found that a simple interaction between just two genes determines the patterns of fur coloration that camouflage mice against their background, protecting them from many predators. The work, published this week in the journal PLoS Biology, marks one of the few instances in which specific genetic changes have been linked to an organism's ability to survive in the wild.

"Our work shows how changes in just a few genes can greatly alter an organism's appearance," says Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Faculty of Arts and Sciences. "It also illuminates the pathway by which these two genes interact to produce distinctive coloration. There's reason to believe this simple pathway may be evolutionarily conserved across mammals that display lighter bellies and darker backs, from mice to tuxedo cats to German Shepherds."

Hoekstra and co-authors Cynthia C. Steiner at UCSD and Jesse Weber at Harvard studied Peromyscus, a mouse that is the most widespread mammal in North America. Within the last several thousand years, these mice have migrated from mainland Florida to barrier islands and dunes along the Atlantic and Gulf coasts, where they now live on white sand beaches. In the process, the beach mice's coats have become markedly lighter than that of their mainland brethren.

... more about:
»Mutation »camouflage »changes »coloration »pattern

"In nature there is a tremendous amount of variation in color patterns among organisms, ranging from leopard spots to zebra stripes, that help individuals survive," says Steiner, a postdoctoral researcher in UCSD's Division of Biological Sciences. "However, we know surprisingly little about how these adaptive color patterns are generated. In this paper, we identify the genetic changes producing a simple color pattern that helps camouflage mice inhabiting the sandy dunes of Florida's Gulf and Atlantic coasts. These 'beach mice' have evolved a lighter pigmentation than their mainland relatives, a coloration that helps camouflage them from predators that include owls, herons, and hawks."

Previous research has shown that such predators, all of which hunt by sight, will preferentially catch darker mice on the white sand beaches, providing a powerful opportunity for natural selection to evolve increased camouflage.

Through a detailed genomic analysis, Hoekstra, Steiner, and Weber identified two pigmentation genes, for the melanocortin-1 receptor (Mc1r) and an agouti signaling protein (Agouti) that binds to this receptor and turns it off. A single amino-acid mutation in Mc1r gene can weaken the receptor's activity, or a mutation in the Agouti gene can increase the amount of protein present without changing the protein's sequence, also reducing Mc1r activity and yielding lighter pigmentation.

Both genes affect the type and amount of melanin in individual hairs. When both genes are turned on, the mouse is dark in color. A mutation that changes either gene leads to a somewhat blonder mouse, but it is the combination of mutations in both genes that produces a mouse very light in color.

"Thus, two different types of mutations in two different genes each contribute to the light coloration of beach mice," Hoekstra says. "This work represents a first step into understanding how unique patterns of fur color are produced via a simple interaction between genes."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Mutation camouflage changes coloration pattern

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>