Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Study Suggests Anxiety Disorders Take Root in Infancy

28.03.2002


The absence of a key signaling protein in the brain during infancy could lead to anxiety disorders later in life, scientists say. According to findings published today in the journal Nature, mice lacking the receptor protein for the chemical messenger serotonin just after birth exhibit abnormal anxiety as adults.



Researchers have known for some time that mice genetically engineered to lack the receptor for serotonin, a neurotransmitter, show anxiety-like behavior. But the new results go one step further, revealing when in life and where in the brain the link between serotonin receptors and anxiety behavior is forged. As in earlier studies, the investigators, led by René Hen of Columbia University, first created a line of so-called knockout mice that lacked the gene encoding the receptor protein. Those mice showed the expected signs of anxiety, such as moving around less open spaces and taking longer to start eating in new environments as compared with normal animals. To determine which of the two receptor populations--the one in the forebrain or the one in the brainstem--is most critical in that regard, the team then crossed the knockout mice with a line engineered to activate receptor expression in particular brain regions. The resulting line of double-transgenic "rescue" animals expressed the serotonin receptors only in the forebrain, but exhibited normal anxiety behavior. Further tests, in which the drug doxycycline was used to suppress the receptors in mice at various stages of development, showed that eliminating the receptors in juvenile or adult mice did not elicit over-anxiousness.

"Forebrain serotonin receptors are needed during the development of newborns to modulate the predisposition to anxiety-like behavior, but are no longer critical during adult life," Solomon Snyder of Johns Hopkins University explains in a commentary accompanying the report. He proposes that variations in serotonin-sensitive neurons and serotonin receptors early in life might account for the importance of maternal nurturing in preventing emotional disorders later in life. Rats that were not groomed sufficiently as pups by their mothers display elevated levels of anxiety as adults, he notes. "Assuming that we can equate developmental stages in mice and humans," Snyder reflects, "these findings might be relevant to brain development and the genesis of anxiety in people too."

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>