Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse Study Suggests Anxiety Disorders Take Root in Infancy

28.03.2002


The absence of a key signaling protein in the brain during infancy could lead to anxiety disorders later in life, scientists say. According to findings published today in the journal Nature, mice lacking the receptor protein for the chemical messenger serotonin just after birth exhibit abnormal anxiety as adults.



Researchers have known for some time that mice genetically engineered to lack the receptor for serotonin, a neurotransmitter, show anxiety-like behavior. But the new results go one step further, revealing when in life and where in the brain the link between serotonin receptors and anxiety behavior is forged. As in earlier studies, the investigators, led by René Hen of Columbia University, first created a line of so-called knockout mice that lacked the gene encoding the receptor protein. Those mice showed the expected signs of anxiety, such as moving around less open spaces and taking longer to start eating in new environments as compared with normal animals. To determine which of the two receptor populations--the one in the forebrain or the one in the brainstem--is most critical in that regard, the team then crossed the knockout mice with a line engineered to activate receptor expression in particular brain regions. The resulting line of double-transgenic "rescue" animals expressed the serotonin receptors only in the forebrain, but exhibited normal anxiety behavior. Further tests, in which the drug doxycycline was used to suppress the receptors in mice at various stages of development, showed that eliminating the receptors in juvenile or adult mice did not elicit over-anxiousness.

"Forebrain serotonin receptors are needed during the development of newborns to modulate the predisposition to anxiety-like behavior, but are no longer critical during adult life," Solomon Snyder of Johns Hopkins University explains in a commentary accompanying the report. He proposes that variations in serotonin-sensitive neurons and serotonin receptors early in life might account for the importance of maternal nurturing in preventing emotional disorders later in life. Rats that were not groomed sufficiently as pups by their mothers display elevated levels of anxiety as adults, he notes. "Assuming that we can equate developmental stages in mice and humans," Snyder reflects, "these findings might be relevant to brain development and the genesis of anxiety in people too."

Kate Wong | Scientific American

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>