A low expression of MX2 gene exists in the white blood cells of narcoleptics

Susumu Tanaka, PhD, of the Tokyo Institute of Psychiatry in Japan, conducted the study from a pool of total ribonucleic acid (RNA) – a nucleic acid polymer that plays several important roles in the processes that translate genetic information from DNA into protein products – from 12 patients with narcolepsy with cataplexy and from 12 age- and sex-matched healthy controls. The pooled samples were initially screened for candidate genes for narcolepsy by differential display analysis using annealing control primers (ACP).

The second screening of the samples was carried out by semiquantitative polymerase chain reaction (PCR) – a biochemistry and molecular biology technique for isolating and exponentially amplifying a fragment or sequence of interest of DNA, via enzymatic replication, without using a living organism – using gene-specific primers.

Finally, the expression levels of the candidate genes were further confirmed by quantitative real-time PCR using a new set of samples: 20 patients with narcolepsy with cataplexy and 20 healthy controls.

According to the study, the second screening revealed differential expression of four candidate genes, among which MX2 was confirmed as a significantly down-regulated gene in the white blood cells of narcoleptic patients by quantitative real-time PCR.

“In narcolepsy, it has been suggested that specific alterations in the immune system occur, and it’s important for pathophysiology of this disorder,” said Tanaka. “We thought that we can get these specific alterations by a differential display method using white blood cells. In this study, we applied the new ACP technology to RNA extracted from blood cells and successfully identified the MX2 gene as a dysregulated gene in narcoleptic patients. However, the direct relationship of this gene in narcolepsy has not been elucidated. Further study is needed to explore the functional relationship between the MX2 gene and narcolepsy and characterize the effect of interferons in narcolepsy.”

Narcolepsy is a sleep disorder that causes people to fall asleep uncontrollably during the day. It also includes features of dreaming that occur while awake. Other common symptoms include sleep paralysis, hallucinations and cataplexy.

About one out of every 2,000 people is known to have narcolepsy. The chance that you have narcolepsy is higher when a relative also has it. It is very rare for more than two people in the same family to have this sleep disorder. It affects the same number of men and women.

Those who suspect they might be suffering from narcolepsy, or another sleep disorder, are urged to consult with their primary care doctor or a sleep specialist.

Media Contact

Jim Arcuri EurekAlert!

More Information:

http://www.aasmnet.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors