Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forsyth scientists gain new understanding of adult stem cell regulation

02.08.2007
Animal model shows new control point required for regeneration and homeostasis

Forsyth Institute scientists have discovered an important mechanism for controlling the behavior of adult stem cells.

Research with the flatworm, planaria, found a novel role for the proteins involved in cell-to-cell communication. This work has the potential to help scientists understand the nature of the messages that control stem cell regulation ¯ such as the message that maintain and tells a stem cell to specialize and to become part of an organ e.g.: liver or skin.

In recent years, planarians have been recognized as a great model system to molecularly dissect conserved stem cell regulatory mechanisms in vivo. Planarians have powerful regeneration capability that makes them ideal for studying this process. The Forsyth team uses planarians and other animal models to study development and regeneration.

The Forsyth team will publish this research in the August 16 issue of Development. According to the paper’s lead author, Néstor J. Oviedo, a postdoctoral fellow in the Forsyth Center for Regenerative and Developmental Biology, this work, highlighting the importance of direct cell-cell transfer of small molecules between stem cells and their neighbors, provides an important roadmap for learning about regeneration. “These findings suggest that similar mechanisms may be extraordinarily relevant for controlling the behavior of migratory, plastic cells. Further analysis in both planarians and in vertebrates will provide crucial opportunities for understanding what drives stem cell behavior and may help medical science identify novel therapeutic targets.”

The Forsyth team previously found that communication through gap-junctions (microscopic tunnels directly linking neighboring cells) controls the left-right asymmetric positioning of the internal organs during embryonic development. In this study, they turned to the role of gap junctional signals as regulators of adult stem cells in repair of injury.

Drs. Oviedo and Levin focused on direct cell-cell transfer of small molecules and ions as crucial signals that determine behavior of adult stem cells in vivo. They showed that when one of many specific gap junction channel types was abolished, the adult stem cell pool disappeared along with the regenerative capabilities, suggesting that gap junction-permeable signals are necessary to maintain stem cell state and tissue regeneration. This research demonstrates a novel role for gap-junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic cell regulation

Most recent work in the stem cell field has focused on the secreted protein factors that control embryonic stem cell differentiation. However, no specific gap junction protein had been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. This work demonstrates that gap junction channels providing direct cell-to-cell communication are a critical component for development and normal physiology.

Jennifer Kelly | EurekAlert!
Further information:
http://www.nigms.nih.gov/

Further reports about: Control Regeneration junction mechanism scientists

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>