Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Under magnetic force, nanoparticles may deliver gene therapy

02.08.2007
New delivery system might also carry drugs or cells to targeted sites

After binding DNA segments to tiny iron-containing spheres called nanoparticles, researchers have used magnetic fields to direct the nanoparticles into arterial muscle cells, where the DNA could have a therapeutic effect. Although the research, done in cell cultures, is in early stages, it may represent a new method for delivering gene therapy to benefit blood vessels damaged by arterial disease.

The nanoparticles are extremely small, ranging from 185 to 375 nanometers (a nanometer is one billionth of a meter, or a millionth of a millimeter). For comparison, red blood cells are ten to 100 times larger. The researchers were able to control the nanoparticle size by varying the amount or composition of solvents they used to form the nanoparticles.

The magnetically driven delivery system also may find broader use as a vehicle for delivering drugs, genes or cells to a target organ. “This is a novel delivery system, the first to use a biodegradable, magnetically driven polymer to achieve clinically relevant effects,” said study leader Robert J. Levy, M.D., the William J. Rashkind Chair of Pediatric Cardiology at The Children’s Hospital of Philadelphia. “This system has the potential to be a powerful tool.”

The proof-of-principle study, performed on vascular cells in culture, appears in the August issue of the FASEB Journal, published by the Federation of American Societies for Experimental Biology.

Impregnated with iron oxide, the nanoparticles carry a surface coating of DNA bound to an organic compound called polyethylenimine (PEI). The PEI protected the DNA from being broken down by enzymes called endonucleases that were present in the cell cultures and which occur normally in the bloodstream.

The DNA was in the form of a plasmid, a circular molecule that here carried a gene that coded for a growth-inhibiting protein called adiponectin. By applying a magnetic field, the study team steered the particles into arterial smooth muscle cells. Inside each cell, the DNA separated from the particle, entered the cell nucleus, and produced enough adiponectin to significantly reduce the proliferation of new cells.

In a practical application, such nanoparticles could be magnetically directed into stents, the tiny, expandable metal scaffolds inserted into a patient’s partially blocked vessels to improve blood flow. Many stents eventually fail as cells grow on their surfaces and create new obstructions, so delivering anti-growth genes to stents could help keep blood flowing freely.

The materials composing the nanoparticles are biodegradable, so they break down into simpler, nontoxic chemicals that can be carried away in the blood. “Previous researchers had shown that magnetically driven nanoparticles could deliver DNA in cell cultures, but ours is the first delivery system that is biodegradable, and therefore, safer to use in people,” said Levy.

“This delivery system may be a useful tool for delivering nonviral gene therapy, because it efficiently binds and protects DNA in blood serum and delivers it to cells,” added Levy. As a nonviral method, it avoids the unwanted immune system responses that have occurred when viruses are used to deliver gene therapy.

Levy said his team would pursue further studies into the feasibility of using the nanoparticles for gene therapy in blood vessels damaged by vascular disease. He suggested that the nanoparticles might find broader application, such as delivering gene therapy to tumors, or carrying drugs instead of or in addition to genes. Another possibility is that after preloading genetically engineered cells with nanoparticles, researchers could use magnetic forces to direct the cells to a target organ.

Furthermore, researchers might deliver nanoparticles to magnetically responsive, removable stents in sites other than blood vessels, such as airways or parts of the gastrointestinal tract. “We could remove the stent after the nanoparticles have delivered a sufficient number of genes, cells or other agents to have a long-lasting benefit,” he added.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Magnetic Stent culture deliver magnetically nanoparticle

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>