Coming Soon: Protein Synthesis Without Amino Acids?

Usually, the synthesis of short protein chains (polypeptides) begins with the production of their components, the amino acids. But it can be done differently: In the journal Angewandte Chemie, Chinese researchers report a considerably more convenient method that is similar to olefin polymerization, which is used for the mass production of plastics such as polyethylene. The advantage of this reaction is that it uses inexpensive starting materials and would be ideal for industrial production.

Whether in the body or the factory, the backbone of polypeptide chains is usually formed by the linking of an amino group with the acid group of individual amino acids. Like pearls on a string, the amino acids then line up. However, to get to such a structure, it isn’t absolutely necessary to start from amino acids. Imines, compounds with a carbon-nitrogen double bond, could be an ideal starting material—if it were possible to link them together in an alternating fashion with a carbon monoxide molecule (CO), like a pearl necklace made of two different alternating types of pearl. This long-envisioned process is modeled after the plastic production process known as Ziegler-Natta polymerization, which requires special metal catalysts. The heart of this process is a step called insertion, in which the next “pearl”, or monomer, squeezes itself in between the metal atom and the growing chain.

Until now, attempts to use this type of copolymerization for peptide synthesis have failed because of the lack of a suitable, effective, and continuously operating catalyst. Researchers led by Huailin Sun at Nankai University in China have now found a catalyst to do the job: a simple cobalt complex. The team was thus able to use this technique to synthesize polypeptides that have previously not been accessible by other means.

As a next step, the Chinese researchers want to include not just one, but a variety of imines into the same chain.

Author: Huailin Sun, Nankai University, Tianjin (China), mailto:sunhl@nankai.edu.cn

Title: Metal-Catalyzed Copolymerization of Imines and CO: A Non-Amino Acid Route to Polypeptides

Angewandte Chemie International Edition 2007, 46, No. 32, doi: 10.1002/anie.200700646

Media Contact

Huailin Sun Angewandte Chemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors