A First-Principles Model of Early Evolution

Key to understanding biological evolution is an important, but elusive, connection, known as the genotype-phenotype relationship, which translates the survival of entire organisms into microscopic selection for particular advantageous genes, or protein sequences. The study of Shakhnovich et al establishes such connections by postulating that the death rate of an organism is determined by the stability of the least stable of their proteins.

The simulation of the model proceeds via random mutations, gene duplication, organism births via replication, and organism deaths.

The authors find that survival of the population is possible only after a ‘’Big Bang’’ when a very small number of advantageous protein structures is suddenly discovered and exponential growth of the population ensues. The subsequent evolution of the Protein Universe occurs as an expansion of this small set of proteins through a duplication and divergence process that accompanies discovery of new proteins. The model resolves one of the key mysteries of molecular evolution – the origin of highly uneven distribution of fold family and gene family sizes in the Protein Universe. It quantitatively reproduces these distributions pointing out their origin in biased post “Big Bang’’ evolutionary dynamics of discovery of new proteins. The number of genes in the evolving organisms depends on the mutation rate, demonstrating the intricate relationship between macroscopic properties of organisms – their genome sizes – and microscopic properties – stabilities – of their proteins.

The results of the study suggest a plausible comprehensive scenario of emergence and growth of the Protein Universe in early biological evolution.

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://compbiol.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pcbi.0030139

(link will go live on July 13th)

CITATION: Zeldovich KB, Chen P, Shakhnovich BE, Shakhnovich EI (2007) A first-principles model of early evolution: Emergence of gene families, species, and preferred protein folds. PLoS Comput Biol 3(7): e139. doi:10.1371/journal.pcbi.0030139

CONTACT:
Eugene Shakhnovich
Department of Chemistry and Chemical Biology,
Harvard University,
Cambridge,
Massachusetts,
United States of America
eugene@belok.harvard.edu

Media Contact

Andrew Hyde alfa

More Information:

http://www.ploscompbiol.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors