Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make significant advance in understanding 'sickness' bug

27.06.2007
A breakthrough announced this week by scientists at the University of Southampton's School of Medicine will lead to greater understanding of noroviruses, the most common cause of non-bacterial gastroenteritis around the world.

Traditionally very little has been known about the biology of noroviruses because of the difficulty in culturing and manipulating these pathogens in the laboratory. Now the Southampton team, assisted by colleagues at the University of Otago and Washington University Medical School, has devised a system for manipulating the genome of the murine norovirus (MNV) which affects rodents. This breakthrough will lead to a greater understanding of how these pathogens work and, it is hoped, lead to ways of controlling them.

Human noroviruses, which are closely related to the murine norovirus, are responsible for extensive outbreaks of diarrhoea and vomiting in cruise ships, hotels, schools and hospitals. Up to a million cases of norovirus infection are estimated to occur annually in the UK.

'The human noroviruses have been exceedingly difficult to work with as there is no cell culture system to propagate these viruses, and as a result very little is known about their biology,' comments Professor Ian Clarke, who heads the Virus Group at Southampton.

... more about:
»Biology »MNV »Norovirus

'In the absence of a cell culture system, MNV is a surrogate for study of the human noroviruses. This study represents the culmination of a ten-year research quest in Southampton to obtain recovery of a live norovirus from its nucleic acid.'

The team in Southampton included Drs Vernon Ward, Christopher McCormick, Omar Salim and Paul Lambden and Professor Clarke. Together with Drs Larissa Thackray, Christiane Wobus and Skip Virgin at Washington University School of Medicine they devised a novel way of introducing a complete DNA copy of the MNV RNA genome into human cells grown in the laboratory. This allowed recovery for the first time of intact, functional viral particles from human tissue culture. They also used their system to mutate the virus so that they could identify a sequence that is essential for viral replication.

Their reverse infectious genetics system will be an essential tool for understanding the replication and molecular biology of this and human noroviruses and will help in the development of antivirals aimed at controlling infections.

The work, which was funded through a Wellcome Trust project grant, is published in the Proceedings of the National Academy of Sciences (USA) this week.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

Further reports about: Biology MNV Norovirus

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>